

From Sets to Types

Using the B Method with modern proof tools

Vincent Trélat

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Introduction

B core language

Core (mathematical) language:

- **set theory** (ZF-like)
- axiom of **choice** (CHOICE)
- native numerals ($\mathbb{N}, \mathbb{Z}, \mathbb{R}$)
- **well-definedness** on terms (partial operators)

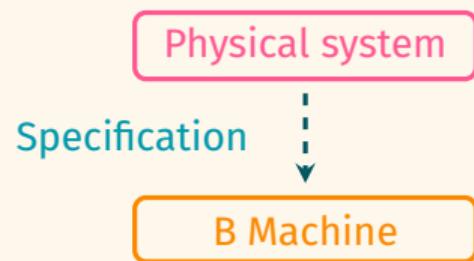
Introduction

B method

Physical system

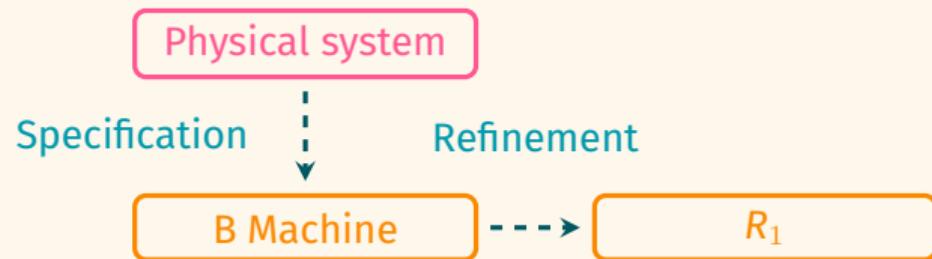
Introduction

B method



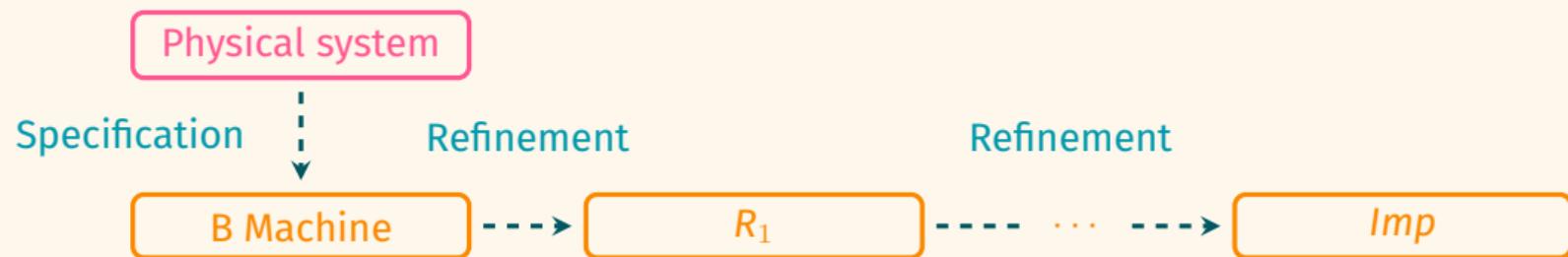
Introduction

B method



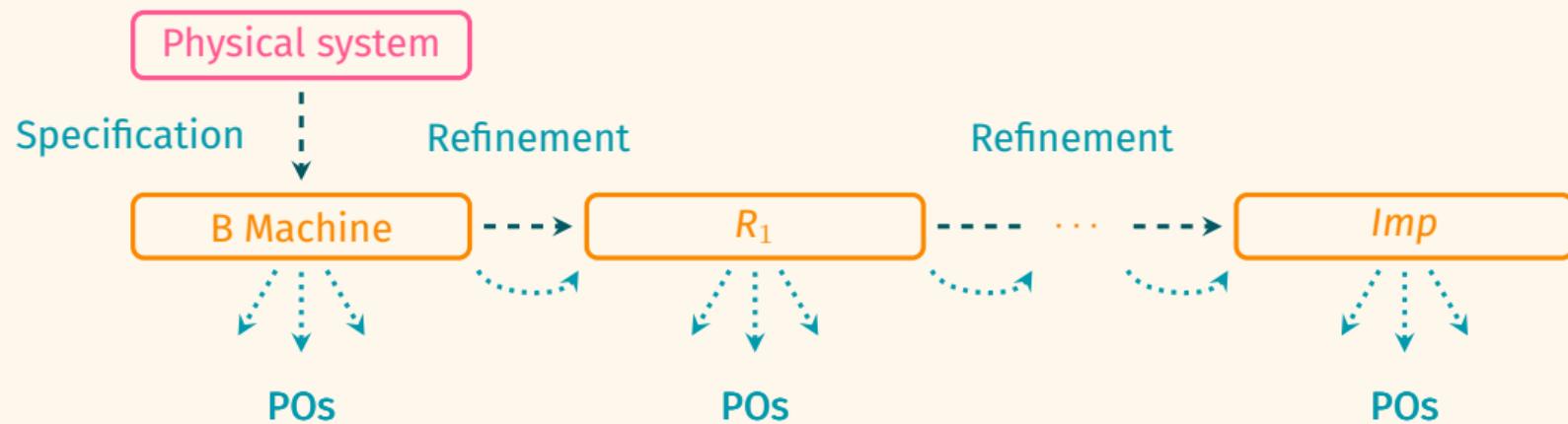
Introduction

B method



Introduction

B method



Introduction

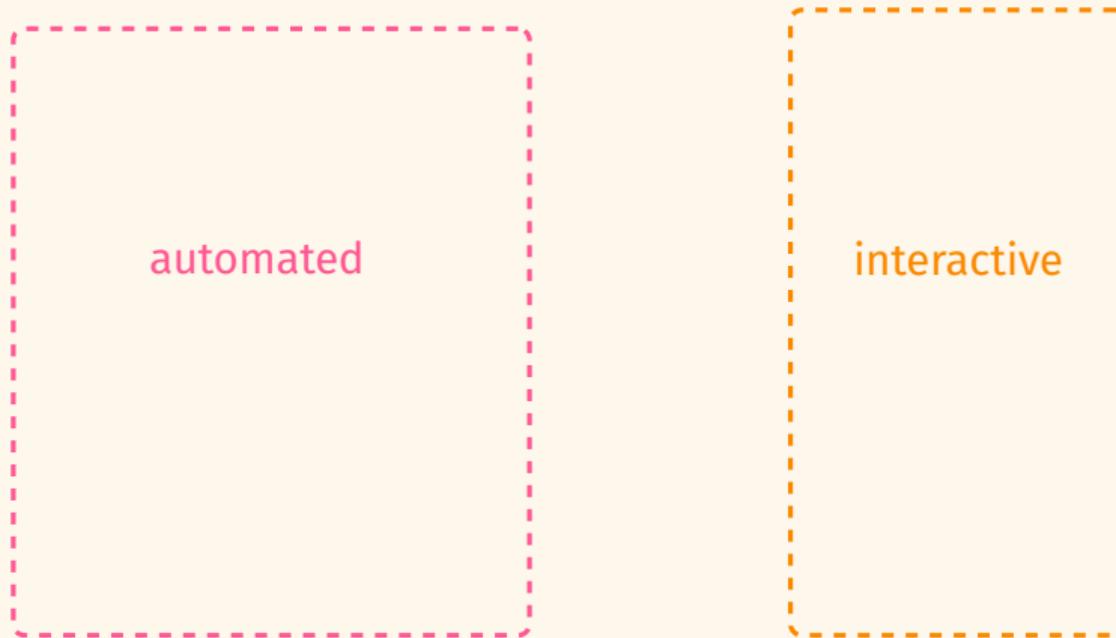
B method

Proof Obligations

Introduction

B method

Proof Obligations



Introduction

B method

Proof Obligations

mp, pp, rp

ppTrans + SMT solvers

automated

ATELIER *B*

interactive

Introduction

B method

Proof Obligations

mp, pp, rp

ppTrans + SMT solvers

automated

+

CVC5

*B*EEr

ATELIER

interactive

BARReL

Introduction

Because Germany taught me to lean on beer,

Introduction

Because Germany taught me to lean on beer,

are written in

Introduction

SMT-LIB (up to v2.6)

- Standard input format for SMT solvers (e.g. `z3`, `cvc5`, `veriT`)
- Based on **many-sorted first-order logic**
- Comes with many **theories** (e.g. arrays, integer and real arithmetic)

Introduction

SMT-LIB (up to v2.6)

- Standard input format for SMT solvers (e.g. `z3`, `cvc5`, `veriT`)
- Based on **many-sorted first-order logic**
- Comes with many **theories** (e.g. arrays, integer and real arithmetic)

SMT-LIB v2.7

- Brings **higher-order constructs** through λ -abstractions
- Brings **higher-order types** through arrow type constructor
- Only supported by `cvc5` yet

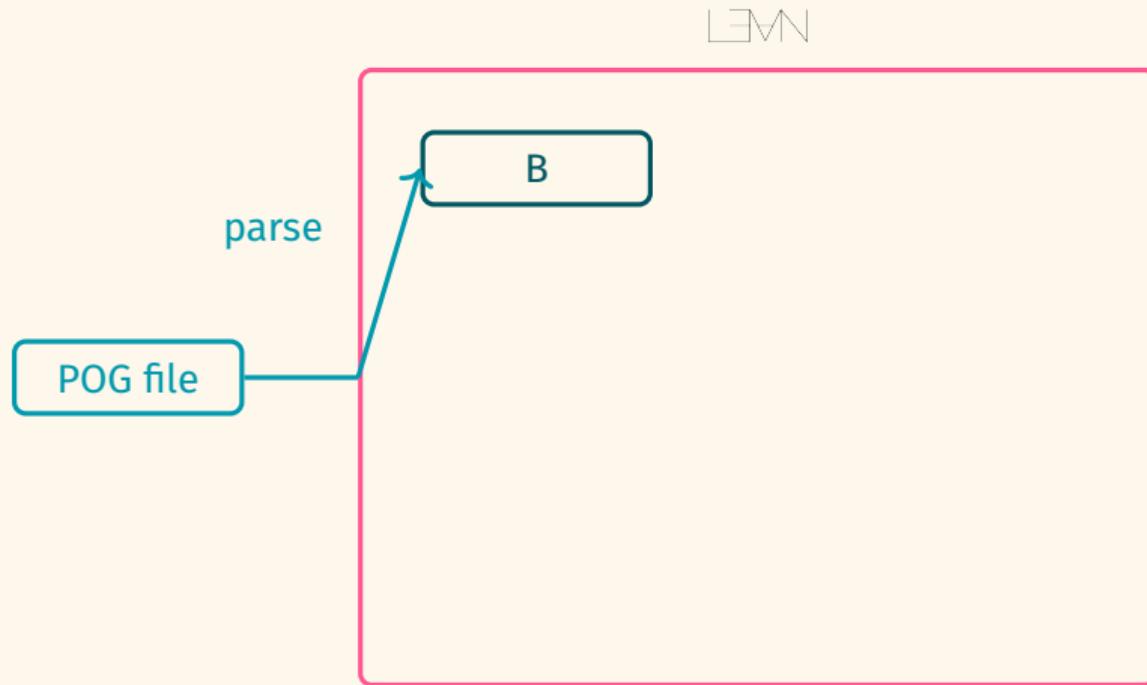
Architecture of

Architecture of 🍺

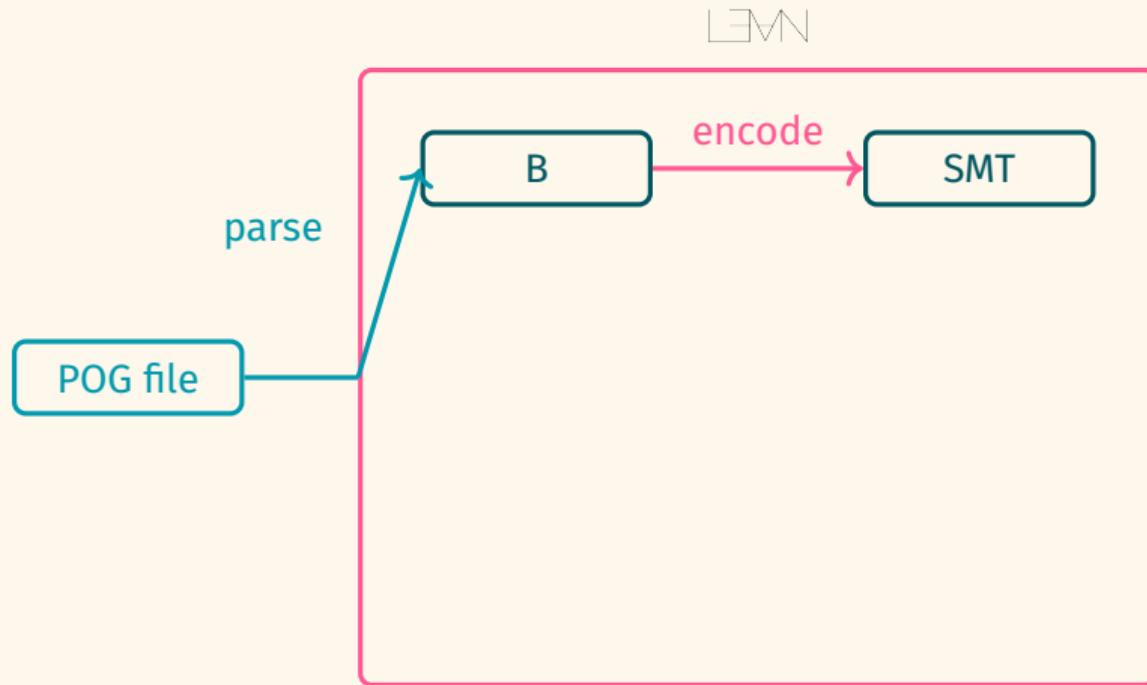
NAME

POG file

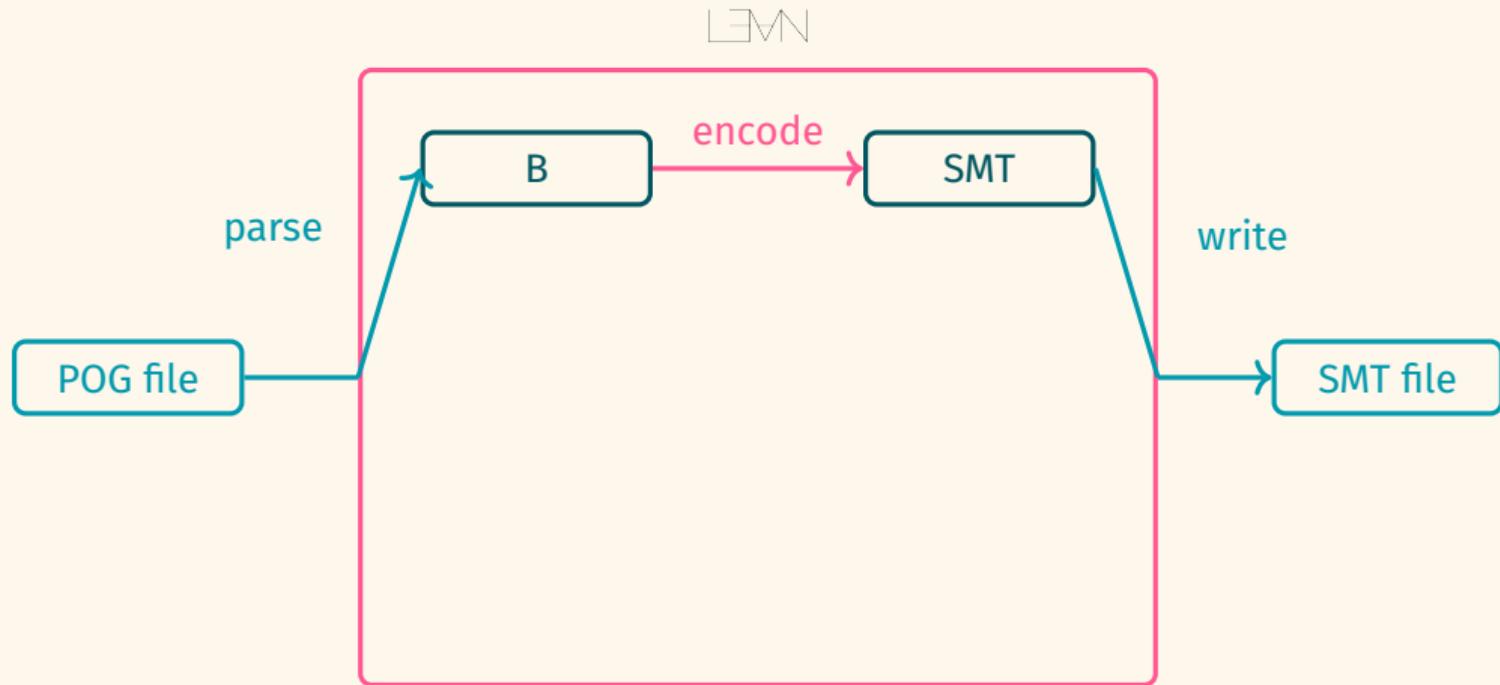
Architecture of 🍺



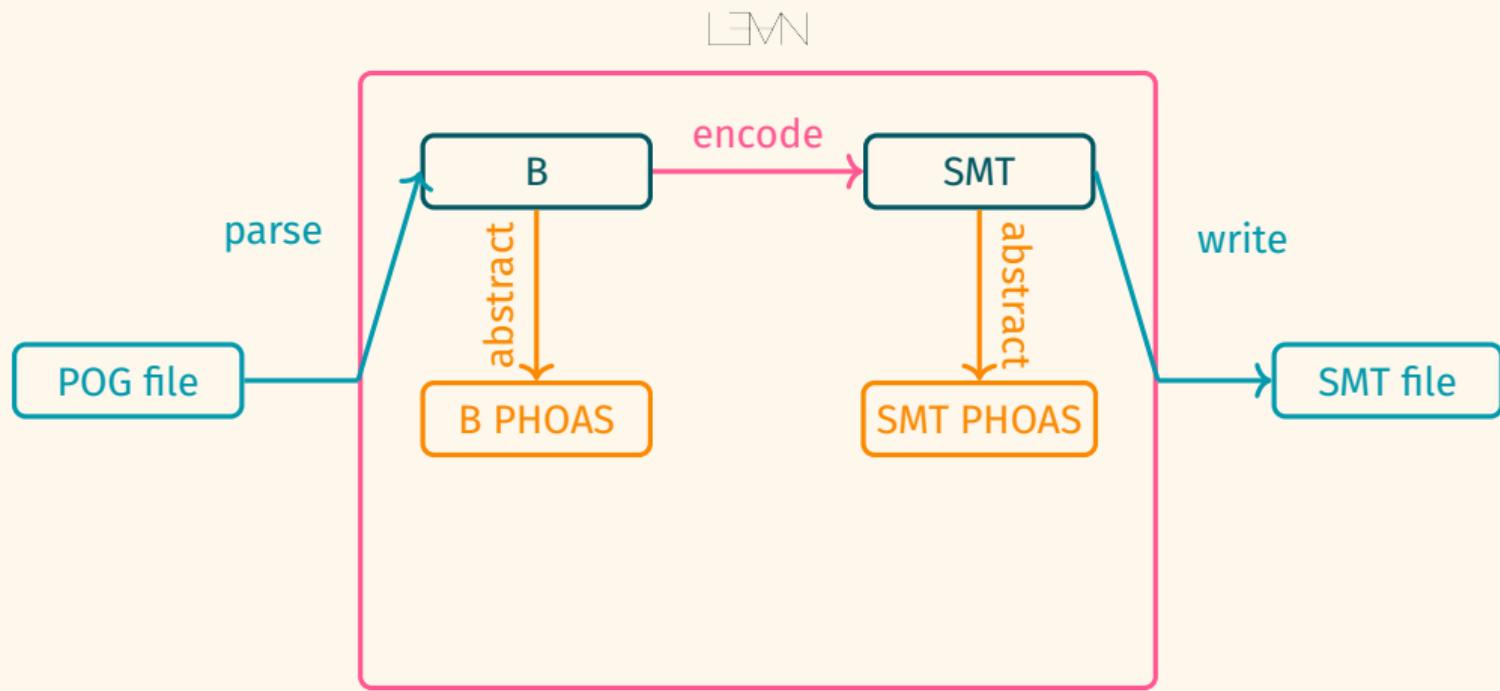
Architecture of 🍺



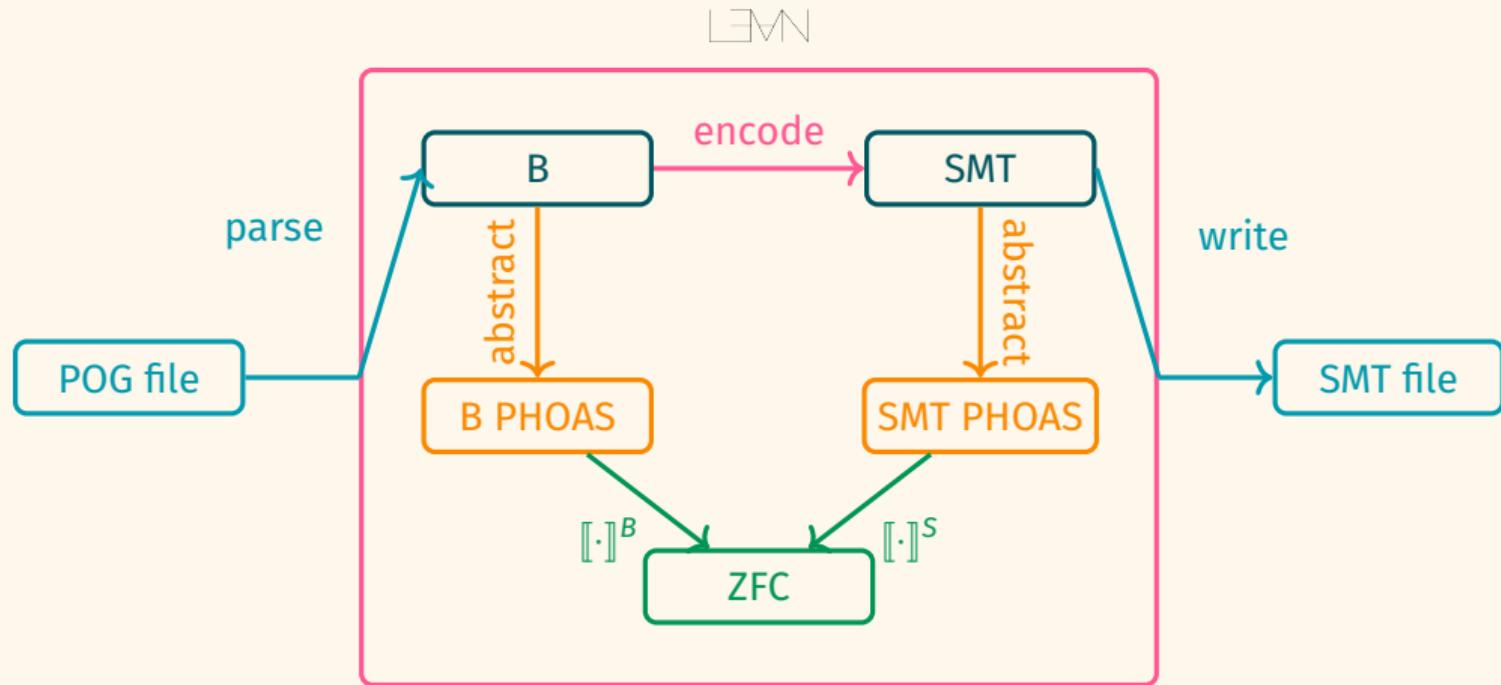
Architecture of 🍺



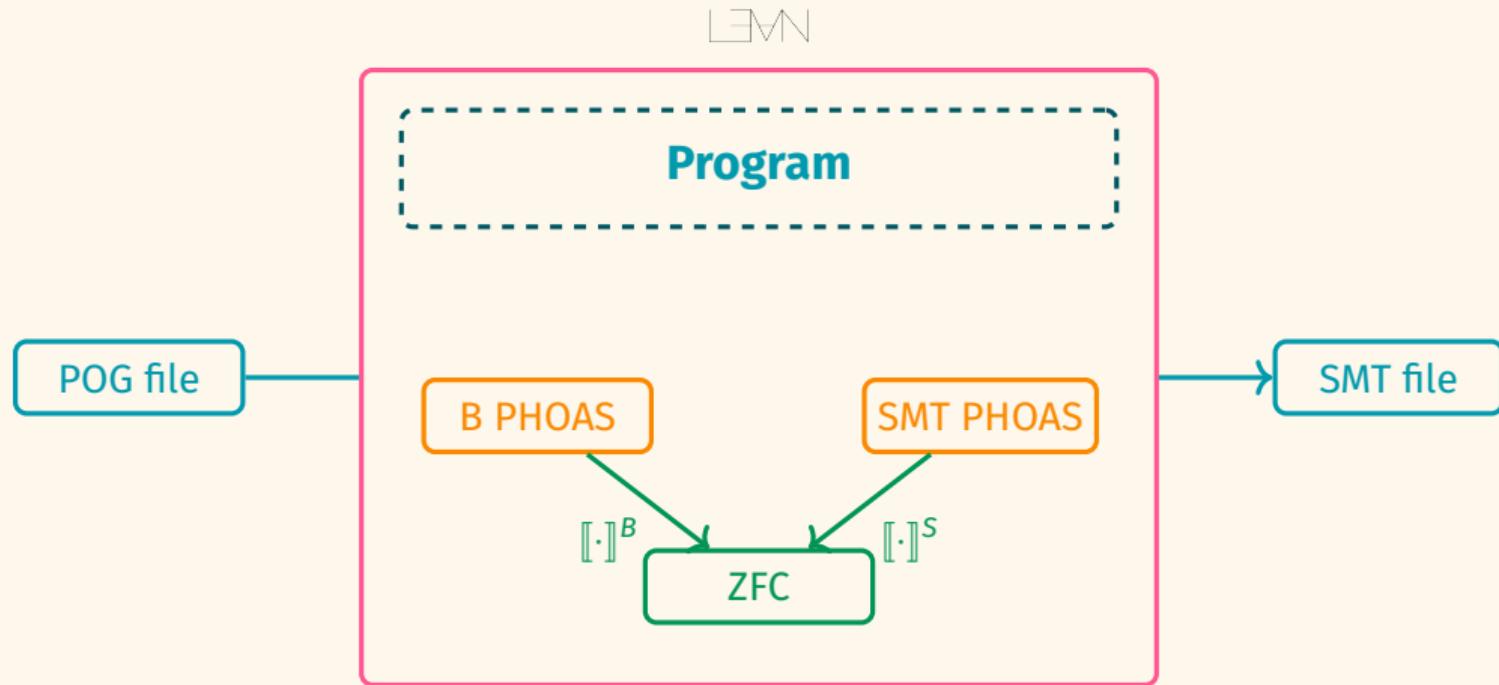
Architecture of 🍺



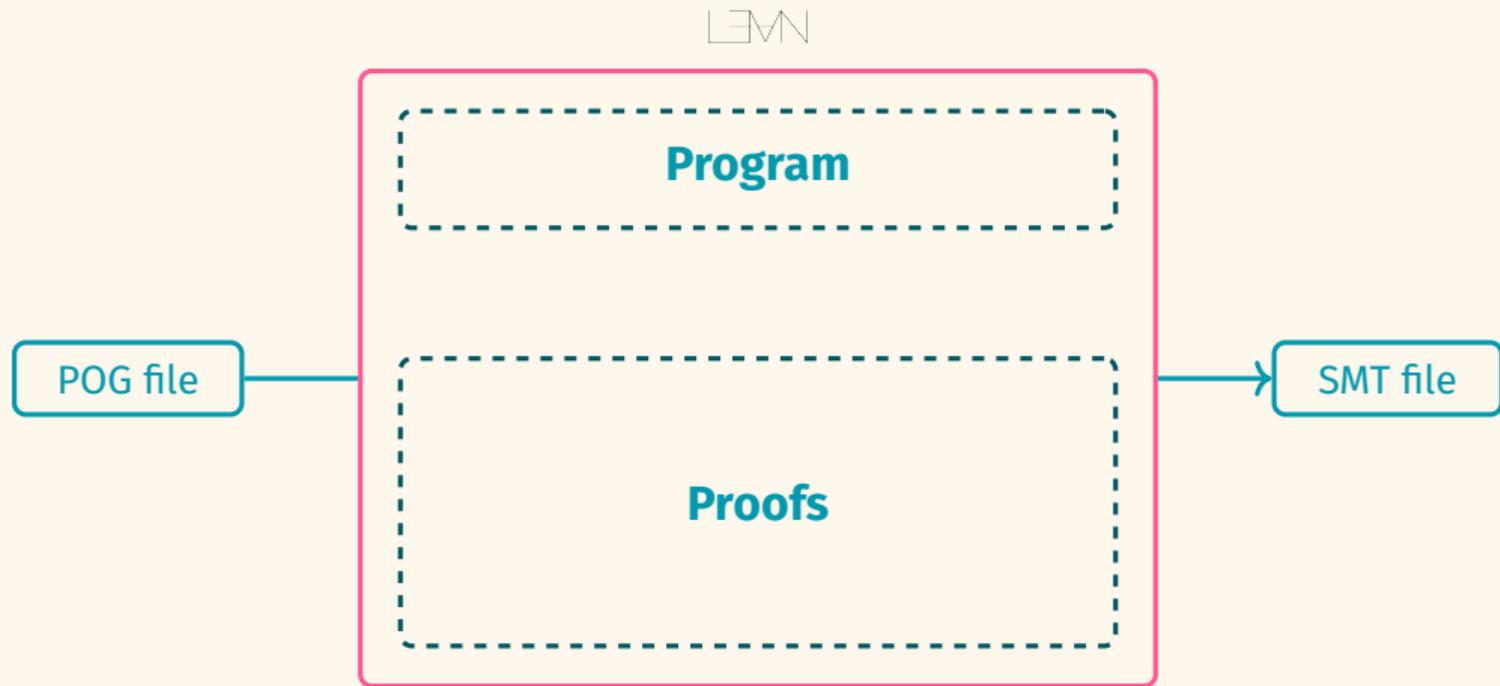
Architecture of



Architecture of



Architecture of 🍺



Overview

FO encoding

HO encoding 🍺

FO encoding

- FOL

HO encoding

- HOL

FO encoding

- FOL
- Specification of sets via \in , \mathbf{P} and \mathbf{C}

HO encoding

- HOL
- Definition of sets via characteristic predicates

Overview

SETS

$S = \{e1, e2, e3\}$

Overview

SETS

$S = \{e_1, e_2, e_3\}$

FO encoding

```
(declare-sort P 1)
(declare-sort C 2)
(declare-fun S () (P Int))
(declare-fun e1 () Int)
(declare-fun e2 () Int)
(declare-fun e3 () Int)
(assert (distinct e1 e2 e3))
(declare-fun ∈₀ ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (= ∈₀ x S)
  (or (= x e1) (= x e2) (= x e3)))))
```

Overview

SETS

$S = \{e_1, e_2, e_3\}$

FO encoding

```
(declare-sort P 1)
(declare-sort C 2)
(declare-fun S () (P Int))
(declare-fun e1 () Int)
(declare-fun e2 () Int)
(declare-fun e3 () Int)
(assert (distinct e1 e2 e3))
(declare-fun ∈₀ ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (= ∈₀ x S)
  (or (= x e1) (= x e2) (= x e3)))))
```

HO encoding

```
(declare-const e1 Int)
(declare-const e2 Int)
(declare-const e3 Int)
(assert (distinct e1 e2 e3))
(define-const S (→ Int Bool)
  (lambda ((x Int))
    (or (= x e1) (= x e2) (= x e3))))
```

FO encoding

- FOL
- Specification of sets via \in , \mathbf{P} and \mathbf{C}

HO encoding

- HOL
- Definition of sets via characteristic predicates

FO encoding

- FOL
- Specification of sets via \in , P and C
- Only expressions like $x \in S$ are encoded

HO encoding

- HOL
- Definition of sets via characteristic predicates
- Sets alone make sense; $x \in S$ is true by definition

Overview

FO encoding

- FOL
- Specification of sets via \in , \mathbf{P} and \mathbf{C}
- Only expressions like $x \in S$ are encoded
- Functions are functional relations

HO encoding

- HOL
- Definition of sets via characteristic predicates
- Sets alone make sense; $x \in S$ is true by definition
- Functions are (sometimes) functions

Suppose we have a function $f \in A \rightarrow B$.

Suppose we have a function $f \in A \rightarrow B$.

FO encoding

f is a relation between A and B :

$$f \subseteq A \times B$$

f is functional:

$$\begin{aligned} \forall x y z, x \mapsto y \in f \wedge x \mapsto z \in f \\ \Rightarrow y = z \end{aligned}$$

Suppose we have a function $f \in A \rightarrow B$.

FO encoding

f is a **relation** between A and B :

$$f \subseteq A \times B$$

f is **functional**:

$$\forall xyz, x \mapsto y \in f \wedge x \mapsto z \in f$$

$$\Rightarrow y = z$$

HO encoding

f is a **total function** from A to $B \uplus \{\star\}$:

$$f \in (B \uplus \{\star\})^A$$

Suppose we have a function $f \in A \rightarrow B$.

FO encoding

f is a **relation** between A and B :

$$f \subseteq A \times B$$

f is **functional**:

$$\forall xyz, x \mapsto y \in f \wedge x \mapsto z \in f$$

$$\Rightarrow y = z$$

HO encoding

f is a **total function** from A to $B \uplus \{\star\}$:

$$f \in (B \uplus \{\star\})^A$$

```
(declare-datatype Option
  (par (T) ((some (the T)) (none))))
```

Suppose we have a function $f \in A \rightarrow B$. Let τ_A and τ_B represent the types of A and B respectively.

Suppose we have a function $f \in A \rightarrow B$. Let τ_A and τ_B represent the types of A and B respectively.

FO encoding

```
(declare-sort P 1)
(declare-sort C 2)
(declare-const f (P (C τA τB)))
(declare-fun
  ∈0 (τA τB (P (C τA τB))) Bool)
(assert
  (forall ((x τA) (y τB) (z τB))
  (⇒ (and (∈0 x y f) (∈0 x z f))
      (= y z))))
```

Suppose we have a function $f \in A \rightarrow B$. Let τ_A and τ_B represent the types of A and B respectively.

FO encoding

```
(declare-sort P 1)
(declare-sort C 2)
(declare-const f (P (C τA τB)))
(declare-fun
  ∈0 (τA τB (P (C τA τB))) Bool)
(assert
  (forall ((x τA) (y τB) (z τB))
  (⇒ (and (∈0 x y f) (∈0 x z f))
  (= y z))))
```

HO encoding

```
(declare-const f (→ τA (Option τB)))
```

Suppose we have a function $f \in A \rightarrow B$. Let τ_A and τ_B represent the types of A and B respectively.

FO encoding

```
(declare-sort P 1)
(declare-sort C 2)
(declare-const f (P (C τA τB)))
(declare-fun
  ∈0 (τA τB (P (C τA τB))) Bool)
(assert
  (forall ((x τA) (y τB) (z τB))
  (⇒ (and (∈0 x y f) (∈0 x z f))
  (= y z))))
```

HO encoding

```
(declare-const f (→ τA (Option τB)))
```

+ specification that $\text{dom } f \subseteq A$ and $\text{ran } f \subseteq B$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot f \in S \rightarrowtail a..b$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot f \in S \rightarrowtail a..b$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot f \in S \Rightarrow a..b \wedge S \subseteq \text{dom}(f) \wedge \text{inj}(f)$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot f \in S \Rightarrow a..b \wedge S \subseteq \text{dom}(f) \wedge \text{inj}(f)$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot$$
$$f \in S \leftrightarrow a..b \quad \wedge$$
$$_func(f) \quad \wedge$$
$$S \subseteq \text{dom}(f) \quad \wedge$$
$$_inj(f)$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\begin{array}{lcl} \forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot \\ \quad f \in S \leftrightarrow a..b & \wedge & \\ \quad \text{_func}(f) & \wedge & \\ \quad S \subseteq \text{dom}(f) & \wedge & \\ \quad \text{_inj}(f) & & \end{array}$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\begin{aligned} \forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot \\ f \in S \leftrightarrow a..b \quad \wedge \\ \forall x: \tau, y: \text{int}, z: \text{int} \cdot x \mapsto y \in f \wedge x \mapsto z \in f \Rightarrow y = z \quad \wedge \\ S \subseteq \text{dom}(f) \quad \wedge \\ \text{inj}(f) \end{aligned}$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot$$
$$f \in S \leftrightarrow a..b \quad \wedge$$
$$\forall x: \tau, y: \text{int}, z: \text{int} \cdot x \mapsto y \in f \wedge x \mapsto z \in f \Rightarrow y = z \quad \wedge$$
$$S \subseteq \text{dom}(f) \quad \wedge$$
$$\text{inj}(f)$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\begin{aligned} \forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot \\ \forall x: \tau, y: \text{int} \cdot x \mapsto y \in f \Rightarrow x \in S \wedge a \leq y \wedge y \leq b & \wedge \\ \forall x: \tau, y: \text{int}, z: \text{int} \cdot x \mapsto y \in f \wedge x \mapsto z \in f \Rightarrow y = z & \wedge \\ S \subseteq \text{dom}(f) & \wedge \\ \text{inj}(f) \end{aligned}$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\begin{array}{l} \forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot \\ \quad \forall x: \tau, y: \text{int} \cdot x \mapsto y \in f \Rightarrow x \in S \wedge a \leq y \wedge y \leq b \\ \quad \forall x: \tau, y: \text{int}, z: \text{int} \cdot x \mapsto y \in f \wedge x \mapsto z \in f \Rightarrow y = z \\ \quad S \subseteq \text{dom}(f) \\ \quad \text{inj}(f) \end{array} \quad \wedge \quad \wedge \quad \wedge$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\begin{aligned} \forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot \\ \forall x: \tau, y: \text{int} \cdot x \mapsto y \in f \Rightarrow x \in S \wedge a \leq y \wedge y \leq b & \wedge \\ \forall x: \tau, y: \text{int}, z: \text{int} \cdot x \mapsto y \in f \wedge x \mapsto z \in f \Rightarrow y = z & \wedge \\ \forall z: \tau \cdot z \in S \Rightarrow \exists w: \text{int} \cdot z \mapsto w \in f & \wedge \\ \text{inj}(f) \end{aligned}$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\begin{aligned} \forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot \\ \forall x: \tau, y: \text{int} \cdot x \mapsto y \in f \Rightarrow x \in S \wedge a \leq y \wedge y \leq b & \wedge \\ \forall x: \tau, y: \text{int}, z: \text{int} \cdot x \mapsto y \in f \wedge x \mapsto z \in f \Rightarrow y = z & \wedge \\ \forall z: \tau \cdot z \in S \Rightarrow \exists w: \text{int} \cdot z \mapsto w \in f & \wedge \\ \text{inj}(f) \end{aligned}$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S is defined as follows in B:

$$\forall a: \text{int} \cdot \exists b: \text{int}, f: \text{set}(\tau \times \text{int}) \cdot$$
$$\forall x: \tau, y: \text{int} \cdot x \mapsto y \in f \Rightarrow x \in S \wedge a \leq y \wedge y \leq b \quad \wedge$$
$$\forall x: \tau, y: \text{int}, z: \text{int} \cdot x \mapsto y \in f \wedge x \mapsto z \in f \Rightarrow y = z \quad \wedge$$
$$\forall z: \tau \cdot z \in S \Rightarrow \exists w: \text{int} \cdot z \mapsto w \in f \quad \wedge$$
$$\forall x: \tau, y: \tau, z: \tau \cdot x \mapsto z \in f \wedge y \mapsto z \in f \Rightarrow x = y$$

How large is the gain?

Let S be a set of elements of type τ .

The expression **finite** S can be encoded as follows:

$$\exists N: \text{int}, f: \tau \rightarrow \text{int}.$$
$$\forall x: \tau, y: \tau, z: \text{int} \cdot f(x) = z \wedge f(y) = z \Rightarrow x = y \quad \wedge$$
$$\forall x: \tau \cdot x \in S \Rightarrow 0 \leq f(x) \wedge f(x) < N$$

Does this work?

```
MACHINE
  M
VARIABLES
  s0
INVARIANT
  s0 ⊆ NAT ∧
  s0 ∩ (Z \ N) ∈ FIN(Z)
INITIALISATION
  s0 :∈ P(NAT)
END
```

Does this work?

The following proof obligation is generated:

```
MACHINE
  M
VARIABLES
  s0
INVARIANT
  s0 ⊆ NAT ∧
  s0 ∩ (Z \ N) ∈ FIN(Z)
INITIALISATION
  s0 :∈ P(NAT)
END
```

$$s0 \in \mathcal{P}(\text{NAT}) \Rightarrow s0 \subseteq \text{NAT} \wedge s0 \cap (Z \setminus N) \in \text{FIN}(Z)$$

Does this work?

```
MACHINE
M
VARIABLES
s0
INVARIANT
s0 ⊆ NAT ∧
s0 ∩ (Z \ N) ∈ FIN(Z)
INITIALISATION
s0 :∈ P(NAT)
END
```

The following proof obligation is generated:

$$s0 \in \mathcal{P}(\text{NAT}) \Rightarrow s0 \subseteq \text{NAT} \wedge s0 \cap (Z \setminus N) \in \text{FIN}(Z)$$

which boils down to proving:

$$s0 \in \mathcal{P}(\text{NAT}) \Rightarrow s0 \in \text{FIN}(Z)$$

Does this work?

```
MACHINE
  M
VARIABLES
  s0
INVARIANT
  s0 ⊆ NAT ∧
  s0 ∩ (Z \ N) ∈ FIN(Z)
INITIALISATION
  s0 :∈ P(NAT)
END
```

The following proof obligation is generated:

$$s0 \in \mathcal{P}(\text{NAT}) \Rightarrow s0 \subseteq \text{NAT} \wedge s0 \cap (Z \setminus N) \in \text{FIN}(Z)$$

which boils down to proving:

$$s0 \in \mathcal{P}(\text{NAT}) \Rightarrow s0 \in \text{FIN}(Z)$$

✗ predicate prover from Atelier B

Does this work?

```
MACHINE
M
VARIABLES
s0
INVARIANT
s0 ⊆ NAT ∧
s0 ∩ (Z \ N) ∈ FIN(Z)
INITIALISATION
s0 :∈ P(NAT)
END
```

The following proof obligation is generated:

$$s0 \in \mathcal{P}(\text{NAT}) \Rightarrow s0 \subseteq \text{NAT} \wedge s0 \cap (Z \setminus N) \in \text{FIN}(Z)$$

which boils down to proving:

$$s0 \in \mathcal{P}(\text{NAT}) \Rightarrow s0 \in \text{FIN}(Z)$$

- ✗ predicate prover from Atelier B
- ✗ `CVC5` with `ppTrans`

Does this work?

```
MACHINE
  M
VARIABLES
  s0
INVARIANT
  s0 ⊆ NAT ∧
  s0 ∩ (Z \ N) ∈ FIN(Z)
INITIALISATION
  s0 :∈ P(NAT)
END
```

The following proof obligation is generated:

$$s0 \in \mathcal{P}(\mathbf{NAT}) \Rightarrow s0 \subseteq \mathbf{NAT} \wedge s0 \cap (Z \setminus N) \in \mathbf{FIN}(Z)$$

which boils down to proving:

$$s0 \in \mathcal{P}(\mathbf{NAT}) \Rightarrow s0 \in \mathbf{FIN}(Z)$$

- ✗ predicate prover from Atelier B
- ✗ CVC5 with ppTrans
- ✓ CVC5 with

BEer: encoding B POs in SMT-LIB using HO

In the current state of 🍺 :

ppTrans	unsat	sat	unknown	Total
unsat	14,831	0	1,062	15,893
sat	0	0	0	0
unknown	272	0	780	1,052
Total	15,103	0	1,842	16,945

Benchmark specs:

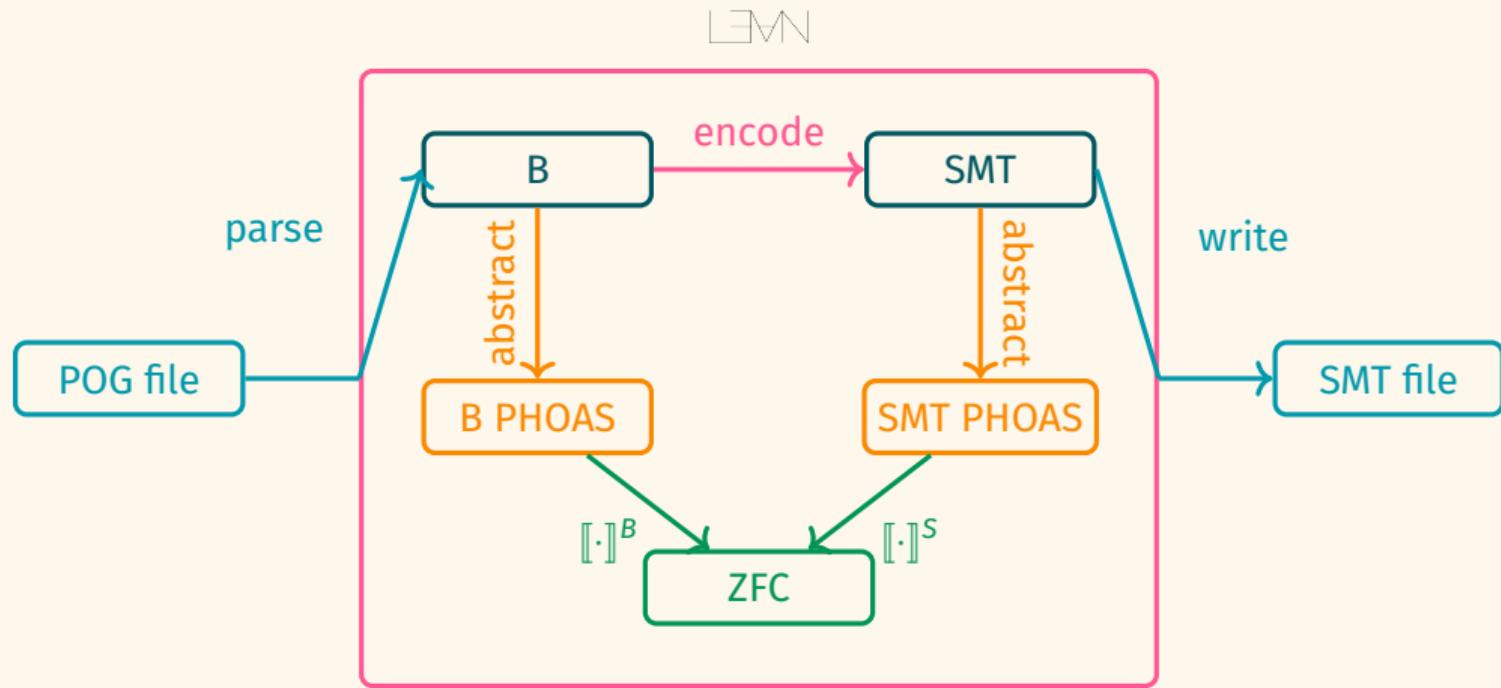
- **681,285** POs in total
- Apple M2 (10 CPU cores, 24 GB RAM)
- **cvc5** with incremental mode, MBQI enabled and 3s timeout per query

BEer: encoding B POs in SMT-LIB using HO

Demo

Demo time!

Architecture of 🍺



BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:

$$[\![\cdot]\!]^B : \text{Term } \mathcal{V} \rightarrow \mathcal{V}$$

BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:

$$[\![\cdot]\!]^B : \text{Term ZFSet} \rightarrow \text{ZFSet}$$

BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:

$$[\![\cdot]\!]^B : \text{Term Dom} \rightarrow \text{Dom}$$

BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:

$$\llbracket \cdot \rrbracket^B : \text{Term Dom} \rightarrow \text{Dom}$$

where

$$\text{Dom} := \sum_{x, \tau} x \in \llbracket \tau \rrbracket^z$$

$$\begin{cases} \llbracket \text{int} \rrbracket^z & := \mathbb{Z}^z \\ \llbracket \text{bool} \rrbracket^z & := \mathbb{B}^z \\ \llbracket \text{set } \alpha \rrbracket^z & := \mathcal{P}^z(\llbracket \alpha \rrbracket^z) \\ \llbracket \alpha \times {}^B \beta \rrbracket^z & := \llbracket \alpha \rrbracket^z \times^z \llbracket \beta \rrbracket^z \end{cases}$$

What we are after

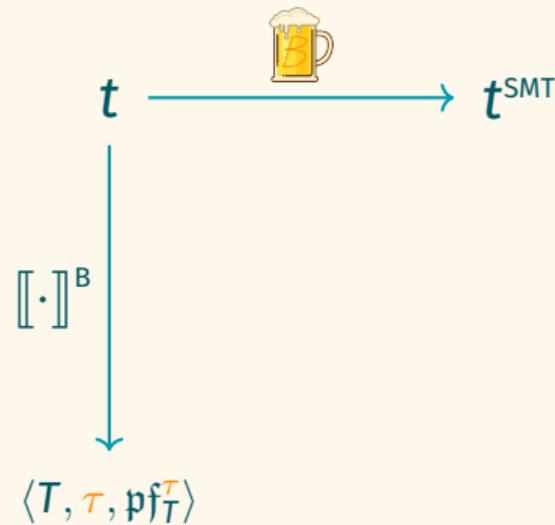
What we are after

t

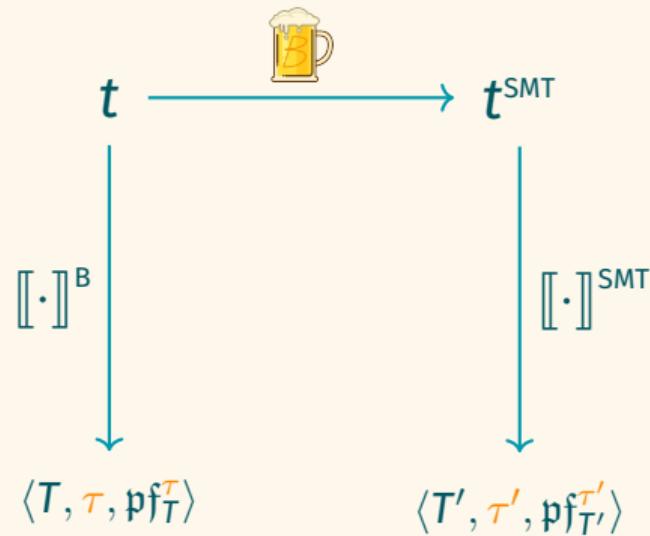
What we are after

$$t \xrightarrow{\text{🍺}} t^{\text{SMT}}$$

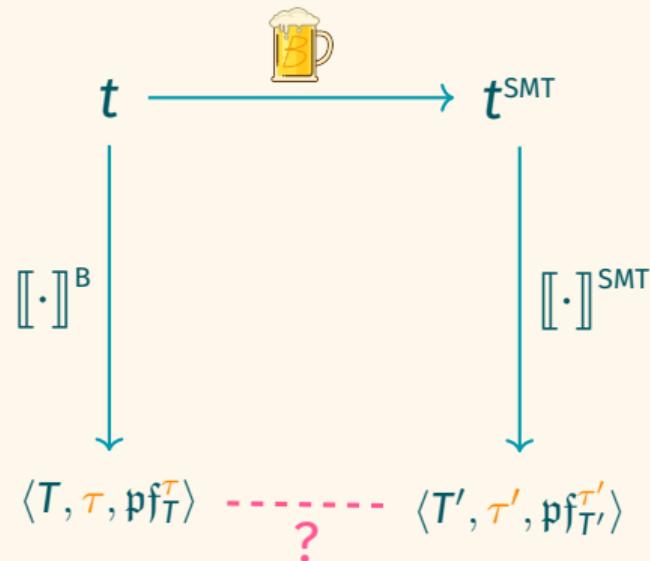
What we are after



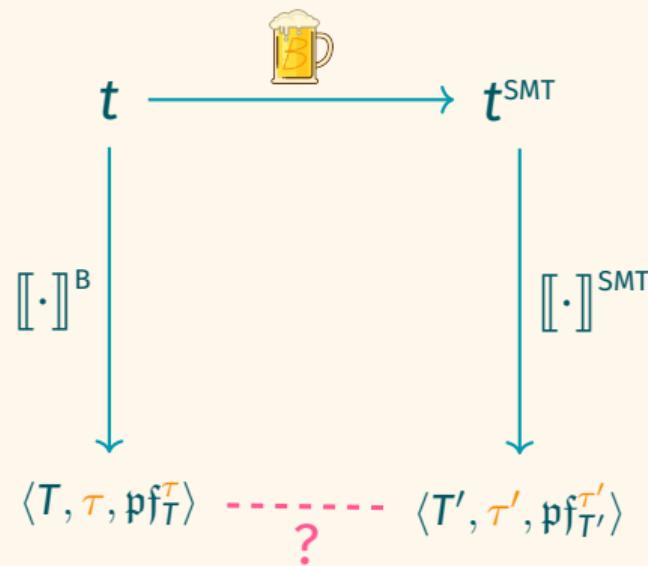
What we are after



What we are after



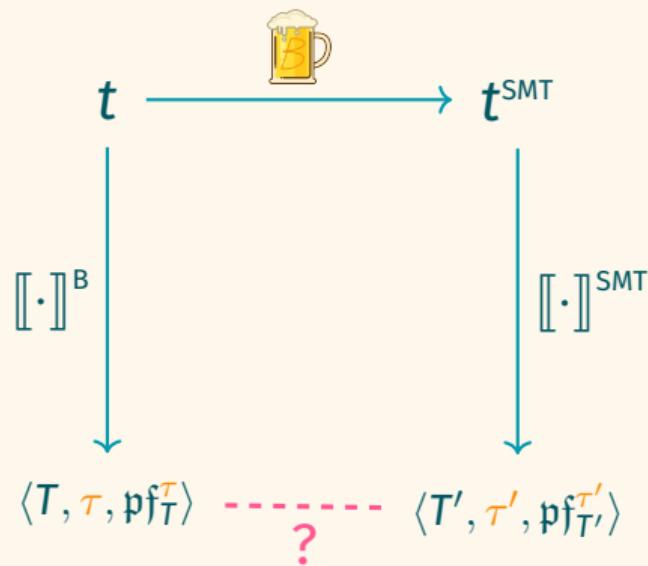
What we are after



We should at least have:

$$\tau' = \tau^{\text{SMT}}$$

What we are after



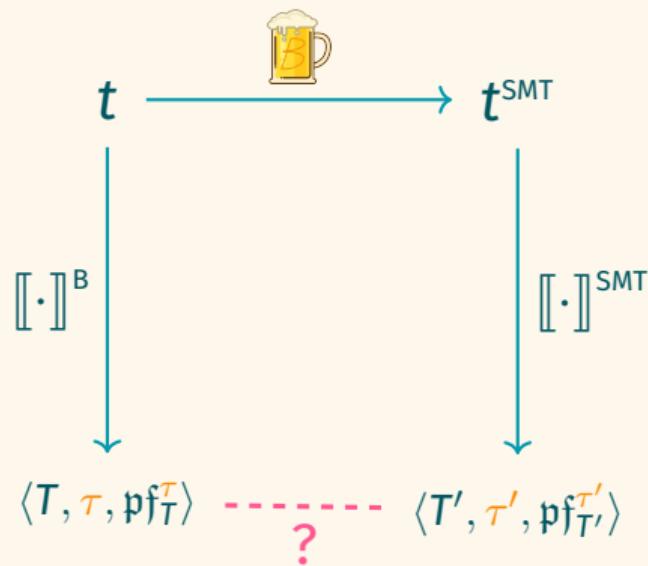
We should at least have:

$$\tau' = \tau^{\text{SMT}}$$

and something like:

T “corresponds to” T'

What we are after



We should at least have:

$$\tau' = \tau^{\text{SMT}}$$

and something like:

T “corresponds to” T'

which has to be formalized.

Theorem

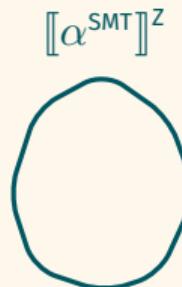
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α :

$$\llbracket \alpha \rrbracket^z \cong \llbracket \alpha^{\text{SMT}} \rrbracket^z$$

Theorem

B types and their SMT-LIB translations are isomorphic, i.e., for any B type α :

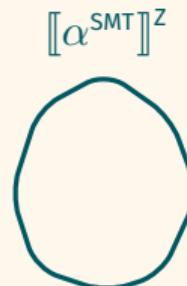
$$\llbracket \alpha \rrbracket^z \cong \llbracket \alpha^{\text{SMT}} \rrbracket^z$$



Theorem

B types and their SMT-LIB translations are isomorphic, i.e., for any B type α :

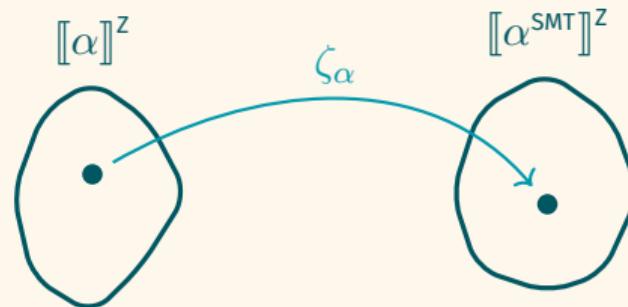
$$\llbracket \alpha \rrbracket^z \cong \llbracket \alpha^{\text{SMT}} \rrbracket^z$$



Theorem

B types and their SMT-LIB translations are isomorphic, i.e., for any B type α :

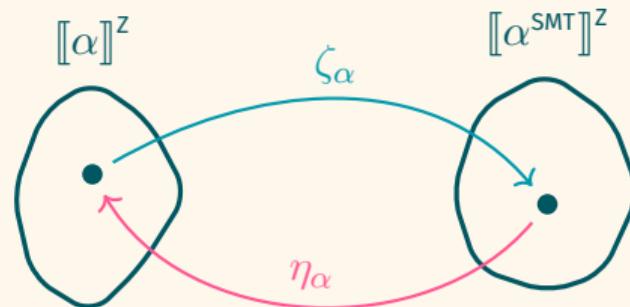
$$\llbracket \alpha \rrbracket^z \cong \llbracket \alpha^{\text{SMT}} \rrbracket^z$$



Theorem

B types and their SMT-LIB translations are isomorphic, i.e., for any B type α :

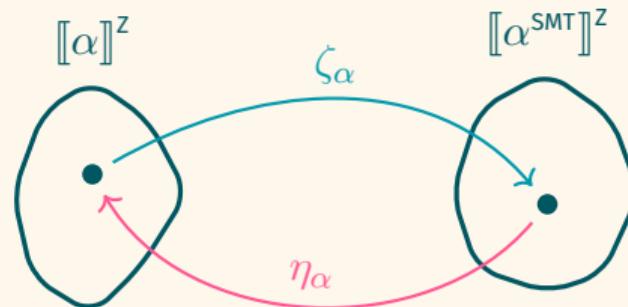
$$\llbracket \alpha \rrbracket^z \cong \llbracket \alpha^{\text{SMT}} \rrbracket^z$$



Theorem

B types and their SMT-LIB translations are isomorphic, i.e., for any B type α :

$$\llbracket \alpha \rrbracket^z \cong \llbracket \alpha^{\text{SMT}} \rrbracket^z$$

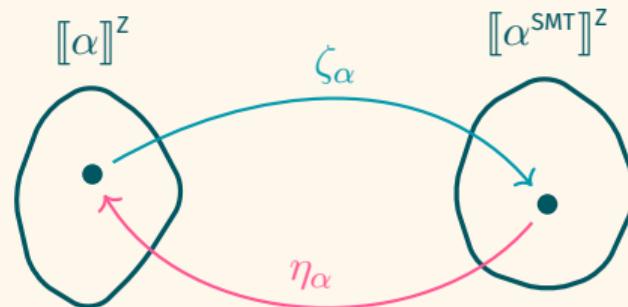


Inductively-defined indexed family of canonical isomorphisms $(\zeta_\alpha)_{\alpha: \text{BType}}$ with associated retractions $(\eta_\alpha)_{\alpha: \text{BType}}$.

Theorem

B types and their SMT-LIB translations are isomorphic, i.e., for any B type α :

$$\llbracket \alpha \rrbracket^z \cong \llbracket \alpha^{\text{SMT}} \rrbracket^z$$



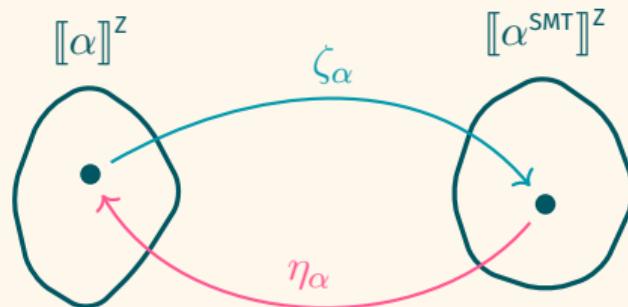
Inductively-defined indexed family of canonical isomorphisms $(\zeta_\alpha)_{\alpha : \text{BType}}$ with associated retractions $(\eta_\alpha)_{\alpha : \text{BType}}$.

$$\eta_\alpha \circ \zeta_\alpha = \mathbb{1}_{\llbracket \alpha \rrbracket^z}$$

Theorem

B types and their SMT-LIB translations are isomorphic, i.e., for any B type α :

$$\llbracket \alpha \rrbracket^z \cong \llbracket \alpha^{\text{SMT}} \rrbracket^z$$



Inductively-defined indexed family of canonical isomorphisms $(\zeta_\alpha)_{\alpha : \text{BType}}$ with associated retractions $(\eta_\alpha)_{\alpha : \text{BType}}$.

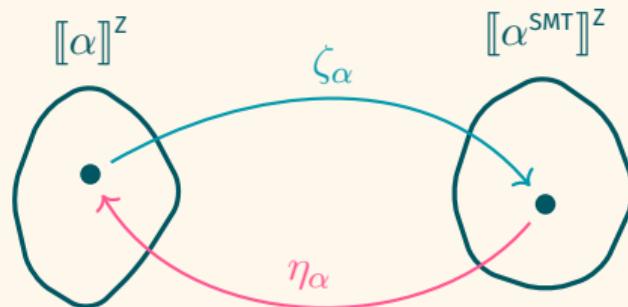
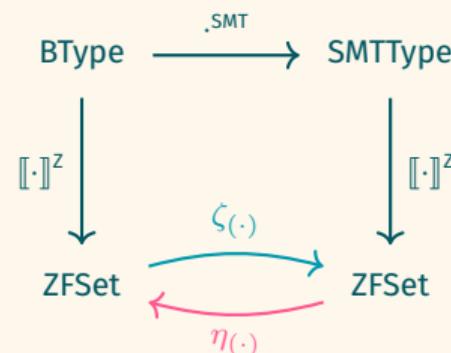
$$\eta_\alpha \circ \zeta_\alpha = \mathbb{1}_{\llbracket \alpha \rrbracket^z}$$

Yes, η_α is ζ_α^{-1} but we define it constructively as well.

Theorem

B types and their SMT-LIB translations are isomorphic, i.e., for any B type α :

$$\llbracket \alpha \rrbracket^z \cong \llbracket \alpha^{\text{SMT}} \rrbracket^z$$

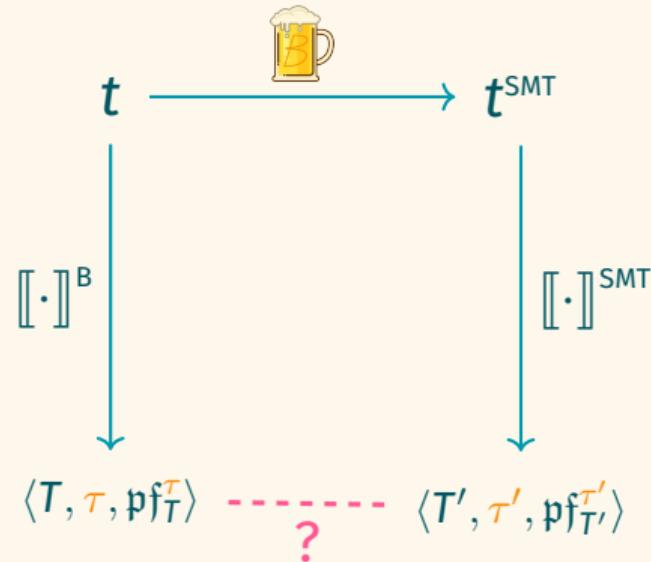


Inductively-defined indexed family of canonical isomorphisms $(\zeta_\alpha)_{\alpha: \text{BType}}$ with associated retractions $(\eta_\alpha)_{\alpha: \text{BType}}$.

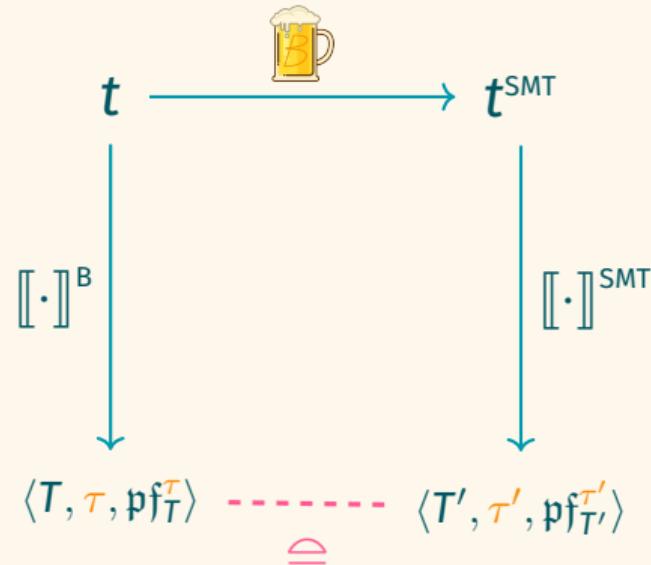
$$\eta_\alpha \circ \zeta_\alpha = \mathbb{1}_{\llbracket \alpha \rrbracket^z}$$

Yes, η_α is ζ_α^{-1} but we define it constructively as well.

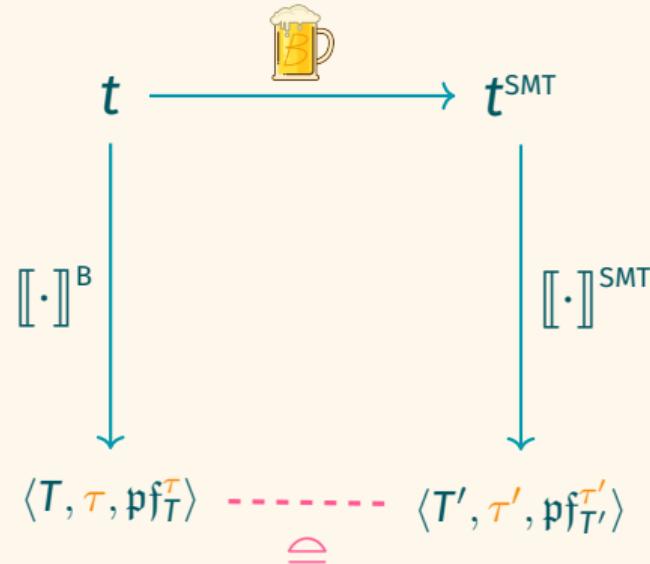
What we are after Found it!



What we are after Found it!



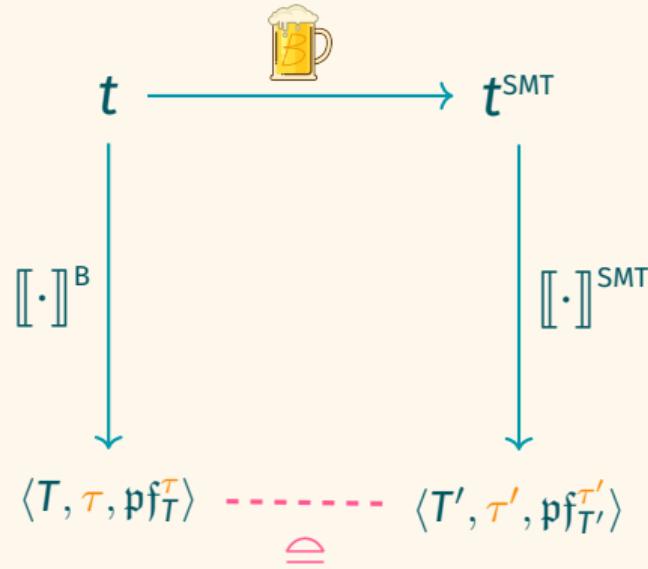
What we are after Found it!



We define $\langle T, \tau, \text{pf}_T \rangle \approx \langle T', \tau', \text{pf}_{T'} \rangle$ as:

$$\tau' = \tau^{\text{SMT}} \wedge \eta_{\tau}(T') = T$$

What we are after Found it!



We define $\langle T, \tau, \text{pf}_T^\tau \rangle \cong \langle T', \tau', \text{pf}_{T'}^{\tau'} \rangle$ as:

$$\tau' = \tau^{\text{SMT}} \wedge \eta_\tau(T') = T$$

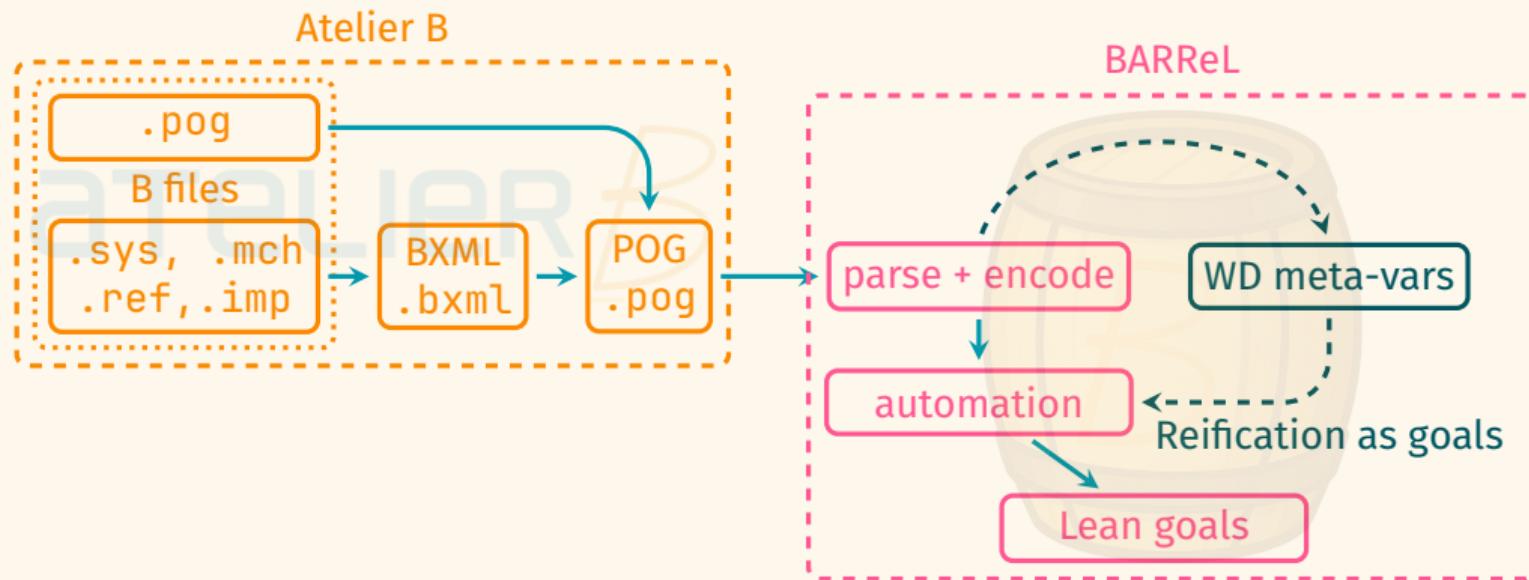
Now prove that this is preserved!

BARReL: when the glass is empty

B Automated tRanslation for Reasoning in Lean

BARReL: when the glass is empty

Pipeline



BARReL: when the glass is empty

Demo

Demo time!

Conclusion

Contributions:

- **Higher-order encoding** leveraging SMT-LIB's latest features
- **Formal semantics** for subsets of B proof obligations and SMT-LIB
- **Loosening** B types to reconcile **set-theoretic** and **type-theoretic** notions
- **ZFLean**: framework for set-level developments in
-

Current/future work:

- **Correctness** of the encoding

VTrelat/{BBeer, BARReL, ZFLean}