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I Introduction

B core language

Core (mathematical) language:
e set theory (ZF-like)
e axiom of choice (CHOICE)
¢ native numerals (N, Z, R)
¢ well-definedness on terms (partial operators)
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I Introduction

SMT-LIB (up to v2.6)

e Standard input format for SMT solvers (e.g. z3, cvcs, veriT)
e Based on many-sorted first-order logic
e Comes with many theories (e.g. arrays, integer and real arithmetic)
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I Introduction

SMT-LIB (up to v2.6)
e Standard input format for SMT solvers (e.g. z3, cvcs, veriT)

e Based on many-sorted first-order logic
e Comes with many theories (e.g. arrays, integer and real arithmetic)

SMT-LIB v2.7
¢ Brings higher-order constructs through \-abstractions
e Brings higher-order types through arrow type constructor
e Only supported by /cvcs yet
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parse write
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e FOL e HOL
e Specification of sets via €, P e Definition of sets via
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I Overview

SETS

S = {el, e2, e3}

FO encoding

(declare-sort P 1)

(declare-sort C 2)

(declare-fun S () (P Int))
(declare-fun el () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct el e2 e3))
(declare-fun o ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=
(€0 x S)
(or (= x el) (= x e2) (= x e3)))))
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I Overview

SETS

S = {el, e2, e3}

FO encoding

HO encoding &

(declare-sort P 1)

(declare-sort C 2)

(declare-fun S () (P Int))
(declare-fun el () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct el e2 e3))
(declare-fun o ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=
(€0 x S)
(or (= x el) (= x e2) (= x e3)))))

(declare-const el Int)
(declare-const e2 Int)
(declare-const e3 Int)
(assert (distinct el e2 e3))
(define-const S (— Int Bool)
(lambda ((x Int))
(or (= x el) (= x e2) (= x e3))))
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e FOL e HOL
e Specification of sets via €, P e Definition of sets via
and C characteristic predicates
e Only expressions like x € S are e Sets alone make sense; x € Sis
encoded true by definition
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I Overview

FO encoding
e FOL

e Specification of sets via €, P
and C

e Only expressions like x € S are
encoded

e Functions are functional
relations

:
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Definition of sets via
characteristic predicates

Sets alone make sense; x € S is
true by definition

Functions are (sometimes)
functions
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Suppose we have a function f € A + B.
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Suppose we have a function f € A + B.

FO encoding

f is a relation between A and B:
fCAxB

f is functional:

Vxyz, x—yef AN x—zef
=y=z
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Suppose we have a function f € A + B.

FO encoding HO encoding &
f is a relation between A and B: f is a total function from A to
B {x}:
fCAxB
feBw{xH

f is functional:

Vxyz, x—yef ANx—zef
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Suppose we have a function f € A + B.

FO encoding HO encoding &
f is a relation between A and B: f is a total function from A to
B {x}:
fCAxB
feBw{xH

f is functional:

VXxyz, x—yef AN x—zef

=y=z (declare-datatype Option
(par (T) ((some (the T)) (none))))
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Suppose we have a function f € A + B. Let 74 and 7 represent the types of A
and B respectively.
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Suppose we have a function f € A + B. Let 74 and 7 represent the types of A
and B respectively.

FO encoding

(declare-sort P 1)
(declare-sort C 2)
(declare-const f (P (C 73 78)))
(declare-fun

€o (ma 73 (P (C 7 78))) Bool)
(assert

(forall ((x 7a) (y 78) (z 78))

(= (and (g0 x y ) (g0 x z ))
(=vy 2))))
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Suppose we have a function f € A + B. Let 74 and 7 represent the types of A
and B respectively.

FO encoding HO encoding

(declare-sort P 1) ‘(declare-const f (> 74 (Option 7)))
(declare-sort C 2)

(declare-const f (P (C 73 78)))
(declare-fun
€0 (TA TB (P (C TA TB))) BOO-L)
(assert
(forall ((x ma) (y 78) (z 78))
(= (and (gp x y ) (€0 x z f))
(=vy 2))))
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Suppose we have a function f € A + B. Let 74 and 7 represent the types of A

and B respectively.

FO encoding

HO encoding

(declare-sort P 1)
(declare-sort C 2)
(declare-const f (P (C 73 78)))
(declare-fun

€0 (TA TB (P (C TA TB))) 8001)
(assert

(forall ((x 74) (y 78) (z 78))

(= (and (g0 x y ) (g0 x z ))
(=vy 2))))

(declare-const f (— 7, (Option 7g)))

+ specification thatdomf CAandranf C B
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:
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Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)

feS«+a.b A
_func(f) A
S C dom(f) A

-in3(f)
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)

feS«a.b A
Vx: ,y:int,z:int - x—yefAx—zef=>y=2 A
S C dom(f) A

-in3(f)
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)

Vx:my:int-x—yef=xeSAna<yAy<b A
Vx:r,y:int,z:int - x—yefAx—zef=y=2 A
A

S C dom(f)
-in3j(f)

1/28
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)

Vx:my:int-x—yef=xeSAna<yAy<b A
Vx:my:int,z:int - x—syefAx—zef=y=z A
A

S C dom(f)
-in3(f)
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)

Vx:my:int-x—yef=xeSAna<yAy<b A
Vx:my:int,z:int - x—syefAx—zef=y=z A
A

Vz:7-zeS=dw:int-z—wef
-inj(f)
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Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)
Vx:rmy:int-x—yef=xeSAa<yAy<b A
Vx:r,y:int,z:int - x—yefAx—zef=y=2
Vz:7-z€eS=3w:int-z—wef
VX:1,¥:T,2: T X—>ZEfAYy—zef=x=y

>
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S can be encoded as follows:

aN: int,f: 7 — int.
Vx:ry:7,z:int - f(x) =zAf(y)=z=x=y A
Vx:7-XeS=0<f(x)Af(x) <N
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I Does this work?

MACHINE
M
VARIABLES
s0
INVARIANT
sO C NAT A
s0 N (Z\N) e FIN(Z)
INITIALISATION
sO :e P(NAT)
END
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The following proof obligation is generated:

MAI:IZHINE s0 € P(NAT) = sO C NAT A sON (Z\ N) € FIN(Z)
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I Does this work?

The following proof obligation is generated:

MAI:IZHINE s0 € P(NAT) = sO C NAT A sON (Z\ N) € FIN(Z)

VAR'[;\B'-ES which boils down to proving:
s

INVARIANT s0 € P(NAT) = s0 € FIN(Z)
sB C NAT A
s8 n (Z\N) € FIN(Z)
INITIALISATION
sO :c P(NAT)
END
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I Does this work?

The following proof obligation is generated:

MAI:IZHINE s0 € P(NAT) = sO C NAT A sON (Z\ N) € FIN(Z)

VAR'[;\B'-ES which boils down to proving:
s

e s0 € P(NAT) = s0 € FIN(Z)
s@ C NAT A
s@ N (Z\N) e FIN(Z)
INITIALISATION . ]
s0 :e P(NAT) X predicate prover from Atelier B

END
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I Does this work?

The following proof obligation is generated:

MAP‘qZH'NE s0 € P(NAT) = sO C NAT A s0 N (Z\ N) € FIN(Z)
VAR'[;\B'-ES which boils down to proving:
s
e s0 € P(NAT) = s0 € FIN(Z)
sO@ C NAT A
s@ N (Z\N) e FIN(Z)
INITIALISATION . ]
s0 :e P(NAT) X predicate prover from Atelier B
END X [cves) with ppTrans
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I Does this work?

The following proof obligation is generated:

MAP‘qZH'NE s0 € P(NAT) = sO C NAT A s0 N (Z\ N) € FIN(Z)
"AR'[;\B'-ES which boils down to proving:
s
e s0 € P(NAT) = s0 € FIN(Z)
s@ C NAT A
s@ N (Z\N) e FIN(Z)
INITIALISATION _ .
s0 :e P(NAT) X predicate prover from Atelier B
END X [cves) with ppTrans

v /cvcs! with 1%
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I BEer: encoding B POs in SMT-LIB using HO

In the current state of EP

- unsat sat unknown  Total
ppTrans
unsat 14,831 o 1,062 15,893
sat o] o] 0 0
unknown 272 o) 780 1,052
Total 15,103 o] 1,842 16,945

Benchmark specs:
® 681,285 POs in total
e Apple M2 (10 CPU cores, 24 GB RAM)
e 'cvcs with incremental mode, MBQI enabled and 3s timeout per query

V. Trélat From Sets to Types 15/28



I BEer: encoding B POs in SMT-LIB using HO

Demo

.
Demo time! | D
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I Architecture of &

parse

l POG file =

write
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I BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:

I[P : Termy —V
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We define a denotation function for abstract B terms:

[[]° : TermZFSet — ZFSet
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We define a denotation function for abstract B terms:

[ : TermDom — Dom
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I BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:
[ : TermDom — Dom

where

Dom = "x €[]’
X, T

[int]® =77

[bool]* =B

[set o] = P*([o])

[a =28 = [a]® x* 8]
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I What we are after
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[T°

(T, 7,pf7)
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I What we are after

2p

[T°

(T, 7,pf7)

3 tSMT

[[.]]SMT

~

(T, 7', pf5)
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~ ~

(T 7opfr) =--5--- (T, 7 pfp)
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(T 7opfr) =--5--- (T, 7 pfp)
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I What we are after

t @D 3 tSMT

[[-]]B [[.]]SMT

~ ~

(T.7,pf7) ---2--- (T, 7, pf%)

We should at least have:

/ SMT
T =T

and something like:

T “corresponds to” T’

which has to be formalized.

:
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Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type a:

[of" = [>T
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Inductively-defined indexed family of canonical isomorphisms () with
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«: BType
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Yes, ne is C;l but we define it constructively as well.
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Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type a:

[of" = [>T

Z
[o]f o [ _—
« ype ——» SMTType
[T [
0
ZFSet C ZFSet
n(-)

Inductively-defined indexed family of canonical isomorphisms () with

associated retractions (7)

«: BType
«: BType*

Mo © Co = ]l[[a]]z

Yes, ne is C;l but we define it constructively as well.
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I Whatwe-are-after Found it!

t 3 tSMT

[[.]]B [[.]]SMT

~ ~

<T7 ) pﬁ:> T -,-?- o <T/7 7_/7 pf;)
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I Whatwe-are-after Found it!

t 3 tSMT

[[.]]B [[.]]SMT

~ ~

(T, 7,pfF) ------- (', 7/, b7}
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I Whatwe-are-after Found it!

t 3 tSMT

[[.]]B [[.]]SMT

~ ~

<T77_7pﬁ:> ------- <T/77J7pf7T">

We define (T, 7, pff) = (T', 7/, pf7.) as:

=" An(T)=T

¥
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I Whatwe-are-after Found it!

— TN o (T! T; .
o We define (T, 7, pfr) =(T', 7/, pf) as

y $SMT
t 7 t 7_/ — TSMT /\ ,,,]T(Tl) — T

Now prove that this is preserved!

[[.]]B [[.]]SMT

~ ~

(T, 7,pfF) ------- (', 7/, b7}
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I BARReL: when the glass is empty

B Automated tRanslation for Reasoning in Lean
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Pipeline

I BARReL: when the glass is empty

Reification as goals

Atelier B —

i\ Bfiles i w P s =4 :
I: : ! 1 s ‘ 1
vifosys, .meh|i [ BXML POG |' . - :
il .ref, .imp |7 bxml) ™| .pog]T — (parse *f“COde] (wo inety vars| :
[ automation ]< ------ 1 :

[ Lean goals ]
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I BARReL: when the glass is empty

Demo

Demo time!
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I Conclusion

Contributions:
* Higher-order encoding leveraging SMT-LIB's latest features
¢ Formal semantics for subsets of B proof obligations and SMT-LIB

® Loosening B types to reconcile set-theoretic and type-theoretic notions
* ZFLean: framework for set-level developments in [ 3V

> @

Current/future work:

e Correctness of the encoding

OVTr‘elat/{BEer‘, BARReL, ZFLean}

:
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https://github.com/VTrelat

