
From Sets to Types
Using the B Method with modern proof tools

Vincent Trélat

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France



Introduction
B core language

Core (mathematical) language:
• set theory (ZF-like)
• axiom of choice (CHOICE)
• native numerals (N, Z, R)
• well-definedness on terms (partial operators)

V. Trélat From Sets to Types 1/28



Introduction
B method

Physical system

B Machine

Specification

R1

Refinement

· · ·

Refinement

Imp

POsPOsPOs POsPOsPOs POsPOsPOs

V. Trélat From Sets to Types 2/28



Introduction
B method

Physical system

B Machine

Specification

R1

Refinement

· · ·

Refinement

Imp

POsPOsPOs POsPOsPOs POsPOsPOs

V. Trélat From Sets to Types 2/28



Introduction
B method

Physical system

B Machine

Specification

R1

Refinement

· · ·

Refinement

Imp

POsPOsPOs POsPOsPOs POsPOsPOs

V. Trélat From Sets to Types 2/28



Introduction
B method

Physical system

B Machine

Specification

R1

Refinement

· · ·

Refinement

Imp

POsPOsPOs POsPOsPOs POsPOsPOs

V. Trélat From Sets to Types 2/28



Introduction
B method

Physical system

B Machine

Specification

R1

Refinement

· · ·

Refinement

Imp

POsPOsPOs POsPOsPOs POsPOsPOs

V. Trélat From Sets to Types 2/28



Introduction
B method

Proof Obligations

automated interactive

mp, pp, rp

ppTrans + SMT solvers

+
BEer BARReL

V. Trélat From Sets to Types 3/28



Introduction
B method

Proof Obligations

automated interactive

mp, pp, rp

ppTrans + SMT solvers

+
BEer BARReL

V. Trélat From Sets to Types 3/28



Introduction
B method

Proof Obligations

automated interactive

mp, pp, rp

ppTrans + SMT solvers

+
BEer BARReL

V. Trélat From Sets to Types 3/28



Introduction
B method

Proof Obligations

automated interactive

mp, pp, rp

ppTrans + SMT solvers

+
BEer BARReL

V. Trélat From Sets to Types 3/28



Introduction

Because Germany taught me to lean on beer,

are written in

V. Trélat From Sets to Types 4/28



Introduction

Because Germany taught me to lean on beer,

are written in

V. Trélat From Sets to Types 4/28



Introduction

SMT-LIB (up to v2.6)
• Standard input format for SMT solvers (e.g. z3, cvc5, veriT)
• Based on many-sorted first-order logic
• Comes with many theories (e.g. arrays, integer and real arithmetic)

SMT-LIB v2.7
• Brings higher-order constructs through λ-abstractions
• Brings higher-order types through arrow type constructor
• Only supported by yet

V. Trélat From Sets to Types 5/28



Introduction

SMT-LIB (up to v2.6)
• Standard input format for SMT solvers (e.g. z3, cvc5, veriT)
• Based on many-sorted first-order logic
• Comes with many theories (e.g. arrays, integer and real arithmetic)

SMT-LIB v2.7
• Brings higher-order constructs through λ-abstractions
• Brings higher-order types through arrow type constructor
• Only supported by yet

V. Trélat From Sets to Types 5/28



V. Trélat From Sets to Types 6/28



Architecture of

B SMT

B PHOAS SMT PHOAS

ZFC

POG file SMT file

parse write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 7/28



Architecture of

B SMT

B PHOAS SMT PHOAS

ZFC

POG file

SMT file

parse write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 7/28



Architecture of

B

SMT

B PHOAS SMT PHOAS

ZFC

POG file

SMT file

parse

write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 7/28



Architecture of

B SMT

B PHOAS SMT PHOAS

ZFC

POG file

SMT file

parse

write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 7/28



Architecture of

B SMT

B PHOAS SMT PHOAS

ZFC

POG file SMT file

parse write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 7/28



Architecture of

B SMT

B PHOAS SMT PHOAS

ZFC

POG file SMT file

parse write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 7/28



Architecture of

B SMT

B PHOAS SMT PHOAS

ZFC

POG file SMT file

parse write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 7/28



Architecture of

B SMT

B PHOAS SMT PHOAS

ZFC

POG file SMT file

parse write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 7/28



Architecture of

B SMT

B PHOAS SMT PHOAS

ZFC

POG file SMT file

parse write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 7/28



Overview

FO encoding

• FOL
• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

HO encoding

• HOL
• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions

V. Trélat From Sets to Types 8/28



Overview

FO encoding
• FOL

• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

HO encoding
• HOL

• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions

V. Trélat From Sets to Types 8/28



Overview

FO encoding
• FOL
• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

HO encoding
• HOL
• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions

V. Trélat From Sets to Types 8/28



Overview

SETS
S = {e1, e2, e3}

FO encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-fun S () (P Int))

(declare-fun e1 () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct e1 e2 e3))

(declare-fun ∈0 ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=

(∈0 x S)

(or (= x e1) (= x e2) (= x e3)))))

HO encoding
(declare-const e1 Int)

(declare-const e2 Int)

(declare-const e3 Int)

(assert (distinct e1 e2 e3))

(define-const S (^-> Int Bool)

(lambda ((x Int))

(or (= x e1) (= x e2) (= x e3))))

V. Trélat From Sets to Types 8/28



Overview

SETS
S = {e1, e2, e3}

FO encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-fun S () (P Int))

(declare-fun e1 () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct e1 e2 e3))

(declare-fun ∈0 ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=

(∈0 x S)

(or (= x e1) (= x e2) (= x e3)))))

HO encoding
(declare-const e1 Int)

(declare-const e2 Int)

(declare-const e3 Int)

(assert (distinct e1 e2 e3))

(define-const S (^-> Int Bool)

(lambda ((x Int))

(or (= x e1) (= x e2) (= x e3))))

V. Trélat From Sets to Types 8/28



Overview

SETS
S = {e1, e2, e3}

FO encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-fun S () (P Int))

(declare-fun e1 () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct e1 e2 e3))

(declare-fun ∈0 ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=

(∈0 x S)

(or (= x e1) (= x e2) (= x e3)))))

HO encoding
(declare-const e1 Int)

(declare-const e2 Int)

(declare-const e3 Int)

(assert (distinct e1 e2 e3))

(define-const S (^-> Int Bool)

(lambda ((x Int))

(or (= x e1) (= x e2) (= x e3))))

V. Trélat From Sets to Types 8/28



Overview

FO encoding
• FOL
• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

HO encoding
• HOL
• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions

V. Trélat From Sets to Types 8/28



Overview

FO encoding
• FOL
• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

HO encoding
• HOL
• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions

V. Trélat From Sets to Types 8/28



Overview

FO encoding
• FOL
• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

HO encoding
• HOL
• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions

V. Trélat From Sets to Types 8/28



Suppose we have a function f ∈ A 7→ B.

FO encoding
f is a relation between A and B:

f ⊆ A× B

f is functional:

∀ x y z, x 7→ y ∈ f ∧ x 7→ z ∈ f
⇒ y = z

HO encoding
f is a total function from A to
B ] {?}:

f ∈ (B ] {?})A

(declare-datatype Option

(par (T) ((some (the T)) (none))))

V. Trélat From Sets to Types 9/28



Suppose we have a function f ∈ A 7→ B.

FO encoding
f is a relation between A and B:

f ⊆ A× B

f is functional:

∀ x y z, x 7→ y ∈ f ∧ x 7→ z ∈ f
⇒ y = z

HO encoding
f is a total function from A to
B ] {?}:

f ∈ (B ] {?})A

(declare-datatype Option

(par (T) ((some (the T)) (none))))

V. Trélat From Sets to Types 9/28



Suppose we have a function f ∈ A 7→ B.

FO encoding
f is a relation between A and B:

f ⊆ A× B

f is functional:

∀ x y z, x 7→ y ∈ f ∧ x 7→ z ∈ f
⇒ y = z

HO encoding
f is a total function from A to
B ] {?}:

f ∈ (B ] {?})A

(declare-datatype Option

(par (T) ((some (the T)) (none))))

V. Trélat From Sets to Types 9/28



Suppose we have a function f ∈ A 7→ B.

FO encoding
f is a relation between A and B:

f ⊆ A× B

f is functional:

∀ x y z, x 7→ y ∈ f ∧ x 7→ z ∈ f
⇒ y = z

HO encoding
f is a total function from A to
B ] {?}:

f ∈ (B ] {?})A

(declare-datatype Option

(par (T) ((some (the T)) (none))))

V. Trélat From Sets to Types 9/28



Suppose we have a function f ∈ A 7→ B. Let τA and τB represent the types of A
and B respectively.

FO encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-const f (P (C τA τB)))
(declare-fun

∈0 (τA τB (P (C τA τB))) Bool)

(assert

(forall ((x τA) (y τB) (z τB))
(^=> (and (∈0 x y f) (∈0 x z f))

(= y z))))

HO encoding
(declare-const f (^-> τA (Option τB)))

+ specification that dom f ⊆ A and ran f ⊆ B

V. Trélat From Sets to Types 10/28



Suppose we have a function f ∈ A 7→ B. Let τA and τB represent the types of A
and B respectively.

FO encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-const f (P (C τA τB)))
(declare-fun

∈0 (τA τB (P (C τA τB))) Bool)

(assert

(forall ((x τA) (y τB) (z τB))
(^=> (and (∈0 x y f) (∈0 x z f))

(= y z))))

HO encoding
(declare-const f (^-> τA (Option τB)))

+ specification that dom f ⊆ A and ran f ⊆ B

V. Trélat From Sets to Types 10/28



Suppose we have a function f ∈ A 7→ B. Let τA and τB represent the types of A
and B respectively.

FO encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-const f (P (C τA τB)))
(declare-fun

∈0 (τA τB (P (C τA τB))) Bool)

(assert

(forall ((x τA) (y τB) (z τB))
(^=> (and (∈0 x y f) (∈0 x z f))

(= y z))))

HO encoding
(declare-const f (^-> τA (Option τB)))

+ specification that dom f ⊆ A and ran f ⊆ B

V. Trélat From Sets to Types 10/28



Suppose we have a function f ∈ A 7→ B. Let τA and τB represent the types of A
and B respectively.

FO encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-const f (P (C τA τB)))
(declare-fun

∈0 (τA τB (P (C τA τB))) Bool)

(assert

(forall ((x τA) (y τB) (z τB))
(^=> (and (∈0 x y f) (∈0 x z f))

(= y z))))

HO encoding
(declare-const f (^-> τA (Option τB)))

+ specification that dom f ⊆ A and ran f ⊆ B

V. Trélat From Sets to Types 10/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int · ∃b : int, f : set (τ × int) · f ∈ S� a..b

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int · ∃b : int, f : set (τ × int) · f ∈ S� a..b

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int · ∃b : int, f : set (τ × int) · f ∈ S→| a..b ∧ S ⊆ dom(f ) ∧ inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int · ∃b : int, f : set (τ × int) · f ∈ S→| a..b ∧ S ⊆ dom(f ) ∧ inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int· ∃b : int, f : set (τ × int)·
f ∈ S↔ a..b ∧
func(f ) ∧
S ⊆ dom(f ) ∧
inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int· ∃b : int, f : set (τ × int)·
f ∈ S↔ a..b ∧
func(f ) ∧
S ⊆ dom(f ) ∧
inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int· ∃b : int, f : set (τ × int)·
f ∈ S↔ a..b ∧
∀ x : τ, y : int, z : int · x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z ∧
S ⊆ dom(f ) ∧
inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int· ∃b : int, f : set (τ × int)·
f ∈ S↔ a..b ∧
∀ x : τ, y : int, z : int · x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z ∧
S ⊆ dom(f ) ∧
inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int· ∃b : int, f : set (τ × int)·
∀ x : τ, y : int · x 7→ y ∈ f ⇒ x ∈ S ∧ a ≤ y ∧ y ≤ b ∧
∀ x : τ, y : int, z : int · x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z ∧
S ⊆ dom(f ) ∧
inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int· ∃b : int, f : set (τ × int)·
∀ x : τ, y : int · x 7→ y ∈ f ⇒ x ∈ S ∧ a ≤ y ∧ y ≤ b ∧
∀ x : τ, y : int, z : int · x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z ∧
S ⊆ dom(f ) ∧
inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int· ∃b : int, f : set (τ × int)·
∀ x : τ, y : int · x 7→ y ∈ f ⇒ x ∈ S ∧ a ≤ y ∧ y ≤ b ∧
∀ x : τ, y : int, z : int · x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z ∧
∀ z : τ · z ∈ S⇒ ∃w : int · z 7→ w ∈ f ∧
inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int· ∃b : int, f : set (τ × int)·
∀ x : τ, y : int · x 7→ y ∈ f ⇒ x ∈ S ∧ a ≤ y ∧ y ≤ b ∧
∀ x : τ, y : int, z : int · x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z ∧
∀ z : τ · z ∈ S⇒ ∃w : int · z 7→ w ∈ f ∧
inj(f )

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:

∀a : int· ∃b : int, f : set (τ × int)·
∀ x : τ, y : int · x 7→ y ∈ f ⇒ x ∈ S ∧ a ≤ y ∧ y ≤ b ∧
∀ x : τ, y : int, z : int · x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z ∧
∀ z : τ · z ∈ S⇒ ∃w : int · z 7→ w ∈ f ∧
∀ x : τ, y : τ, z : τ · x 7→ z ∈ f ∧ y 7→ z ∈ f ⇒ x = y

V. Trélat From Sets to Types 11/28



How large is the gain?

Let S be a set of elements of type τ .
The expression finite S can be encoded as follows:

∃N : int, f : τ → int·
∀ x : τ, y : τ, z : int · f (x) = z ∧ f (y) = z ⇒ x = y ∧
∀ x : τ · x ∈ S⇒ 0 ≤ f (x) ∧ f (x) < N

V. Trélat From Sets to Types 12/28



Does this work?

MACHINE
M

VARIABLES
s0

INVARIANT
s0 ⊆ NAT ∧
s0 ∩ (Z \ N) ∈ FIN(Z)

INITIALISATION
s0 :∈ P(NAT)

END

The following proof obligation is generated:

s0 ∈ P(NAT) ⇒ s0 ⊆ NAT ∧ s0 ∩ (Z \ N) ∈ FIN(Z)

which boils down to proving:

s0 ∈ P(NAT) ⇒ s0 ∈ FIN(Z)

7 predicate prover from Atelier B
7 with ppTrans

3 with

V. Trélat From Sets to Types 13/28



Does this work?

MACHINE
M

VARIABLES
s0

INVARIANT
s0 ⊆ NAT ∧
s0 ∩ (Z \ N) ∈ FIN(Z)

INITIALISATION
s0 :∈ P(NAT)

END

The following proof obligation is generated:

s0 ∈ P(NAT) ⇒ s0 ⊆ NAT ∧ s0 ∩ (Z \ N) ∈ FIN(Z)

which boils down to proving:

s0 ∈ P(NAT) ⇒ s0 ∈ FIN(Z)

7 predicate prover from Atelier B
7 with ppTrans

3 with

V. Trélat From Sets to Types 13/28



Does this work?

MACHINE
M

VARIABLES
s0

INVARIANT
s0 ⊆ NAT ∧
s0 ∩ (Z \ N) ∈ FIN(Z)

INITIALISATION
s0 :∈ P(NAT)

END

The following proof obligation is generated:

s0 ∈ P(NAT) ⇒ s0 ⊆ NAT ∧ s0 ∩ (Z \ N) ∈ FIN(Z)

which boils down to proving:

s0 ∈ P(NAT) ⇒ s0 ∈ FIN(Z)

7 predicate prover from Atelier B
7 with ppTrans

3 with

V. Trélat From Sets to Types 13/28



Does this work?

MACHINE
M

VARIABLES
s0

INVARIANT
s0 ⊆ NAT ∧
s0 ∩ (Z \ N) ∈ FIN(Z)

INITIALISATION
s0 :∈ P(NAT)

END

The following proof obligation is generated:

s0 ∈ P(NAT) ⇒ s0 ⊆ NAT ∧ s0 ∩ (Z \ N) ∈ FIN(Z)

which boils down to proving:

s0 ∈ P(NAT) ⇒ s0 ∈ FIN(Z)

7 predicate prover from Atelier B

7 with ppTrans

3 with

V. Trélat From Sets to Types 13/28



Does this work?

MACHINE
M

VARIABLES
s0

INVARIANT
s0 ⊆ NAT ∧
s0 ∩ (Z \ N) ∈ FIN(Z)

INITIALISATION
s0 :∈ P(NAT)

END

The following proof obligation is generated:

s0 ∈ P(NAT) ⇒ s0 ⊆ NAT ∧ s0 ∩ (Z \ N) ∈ FIN(Z)

which boils down to proving:

s0 ∈ P(NAT) ⇒ s0 ∈ FIN(Z)

7 predicate prover from Atelier B
7 with ppTrans

3 with

V. Trélat From Sets to Types 13/28



Does this work?

MACHINE
M

VARIABLES
s0

INVARIANT
s0 ⊆ NAT ∧
s0 ∩ (Z \ N) ∈ FIN(Z)

INITIALISATION
s0 :∈ P(NAT)

END

The following proof obligation is generated:

s0 ∈ P(NAT) ⇒ s0 ⊆ NAT ∧ s0 ∩ (Z \ N) ∈ FIN(Z)

which boils down to proving:

s0 ∈ P(NAT) ⇒ s0 ∈ FIN(Z)

7 predicate prover from Atelier B
7 with ppTrans

3 with

V. Trélat From Sets to Types 13/28



V. Trélat From Sets to Types 14/28



BEer: encoding B POs in SMT-LIB using HO

In the current state of :

ppTrans
unsat sat unknown Total

unsat 14,831 0 1,062 15,893
sat 0 0 0 0
unknown 272 0 780 1,052
Total 15,103 0 1,842 16,945

Benchmark specs:
• 681,285 POs in total
• Apple M2 (10 CPU cores, 24 GB RAM)
• with incremental mode, MBQI enabled and 3s timeout per query

V. Trélat From Sets to Types 15/28



BEer: encoding B POs in SMT-LIB using HO
Demo

Demo time!

V. Trélat From Sets to Types 16/28



V. Trélat From Sets to Types 17/28



Architecture of

B SMT

B PHOAS SMT PHOAS

ZFC

POG file SMT file

parse write

encode

ab
st
ra
ct

abstract

[[·]]B [[·]]S

Program

Proofs

V. Trélat From Sets to Types 18/28



BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:

J·KB : Term V → V

where
Dom :=

∑
x,τ

x ∈ JτKZ


JintKZ := ZZ

JboolKZ := BZ

Jset αKZ := P Z(JαKZ)
Jα × BβKZ := JαKZ ×Z JβKZ

V. Trélat From Sets to Types 19/28



BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:

J·KB : Term ZFSet → ZFSet

where
Dom :=

∑
x,τ

x ∈ JτKZ


JintKZ := ZZ

JboolKZ := BZ

Jset αKZ := P Z(JαKZ)
Jα × BβKZ := JαKZ ×Z JβKZ

V. Trélat From Sets to Types 19/28



BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:

J·KB : Term Dom → Dom

where
Dom :=

∑
x,τ

x ∈ JτKZ


JintKZ := ZZ

JboolKZ := BZ

Jset αKZ := P Z(JαKZ)
Jα × BβKZ := JαKZ ×Z JβKZ

V. Trélat From Sets to Types 19/28



BEer: encoding B POs in SMT-LIB using HO

We define a denotation function for abstract B terms:

J·KB : Term Dom → Dom

where
Dom :=

∑
x,τ

x ∈ JτKZ


JintKZ := ZZ

JboolKZ := BZ

Jset αKZ := P Z(JαKZ)
Jα × BβKZ := JαKZ ×Z JβKZ

V. Trélat From Sets to Types 19/28



V. Trélat From Sets to Types 20/28



What we are after

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We should at least have:

τ ′ = τ SMT

and something like:

T “corresponds to” T ′

which has to be formalized.

V. Trélat From Sets to Types 21/28



What we are after

t

tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We should at least have:

τ ′ = τ SMT

and something like:

T “corresponds to” T ′

which has to be formalized.

V. Trélat From Sets to Types 21/28



What we are after

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We should at least have:

τ ′ = τ SMT

and something like:

T “corresponds to” T ′

which has to be formalized.

V. Trélat From Sets to Types 21/28



What we are after

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We should at least have:

τ ′ = τ SMT

and something like:

T “corresponds to” T ′

which has to be formalized.

V. Trélat From Sets to Types 21/28



What we are after

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We should at least have:

τ ′ = τ SMT

and something like:

T “corresponds to” T ′

which has to be formalized.

V. Trélat From Sets to Types 21/28



What we are after

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We should at least have:

τ ′ = τ SMT

and something like:

T “corresponds to” T ′

which has to be formalized.

V. Trélat From Sets to Types 21/28



What we are after

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We should at least have:

τ ′ = τ SMT

and something like:

T “corresponds to” T ′

which has to be formalized.

V. Trélat From Sets to Types 21/28



What we are after

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We should at least have:

τ ′ = τ SMT

and something like:

T “corresponds to” T ′

which has to be formalized.

V. Trélat From Sets to Types 21/28



What we are after

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We should at least have:

τ ′ = τ SMT

and something like:

T “corresponds to” T ′

which has to be formalized.

V. Trélat From Sets to Types 21/28



Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α:

JαKZ ∼= JαSMTKZ

JαKZ JαSMTKZ
ζα

ηα

BType SMTType

ZFSet ZFSet

·SMT

J·KZ J·KZ

η(·)

ζ(·)

Inductively-defined indexed family of canonical isomorphisms (ζα)α : BType with
associated retractions (ηα)α : BType.

ηα ◦ ζα = 1JαKZ

Yes, ηα is ζ−1
α but we define it constructively as well.

V. Trélat From Sets to Types 22/28



Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α:

JαKZ ∼= JαSMTKZ

JαKZ JαSMTKZ

ζα

ηα

BType SMTType

ZFSet ZFSet

·SMT

J·KZ J·KZ

η(·)

ζ(·)

Inductively-defined indexed family of canonical isomorphisms (ζα)α : BType with
associated retractions (ηα)α : BType.

ηα ◦ ζα = 1JαKZ

Yes, ηα is ζ−1
α but we define it constructively as well.

V. Trélat From Sets to Types 22/28



Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α:

JαKZ ∼= JαSMTKZ

JαKZ JαSMTKZ

ζα

ηα

BType SMTType

ZFSet ZFSet

·SMT

J·KZ J·KZ

η(·)

ζ(·)

Inductively-defined indexed family of canonical isomorphisms (ζα)α : BType with
associated retractions (ηα)α : BType.

ηα ◦ ζα = 1JαKZ

Yes, ηα is ζ−1
α but we define it constructively as well.

V. Trélat From Sets to Types 22/28



Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α:

JαKZ ∼= JαSMTKZ

JαKZ JαSMTKZ
ζα

ηα

BType SMTType

ZFSet ZFSet

·SMT

J·KZ J·KZ

η(·)

ζ(·)

Inductively-defined indexed family of canonical isomorphisms (ζα)α : BType with
associated retractions (ηα)α : BType.

ηα ◦ ζα = 1JαKZ

Yes, ηα is ζ−1
α but we define it constructively as well.

V. Trélat From Sets to Types 22/28



Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α:

JαKZ ∼= JαSMTKZ

JαKZ JαSMTKZ
ζα

ηα

BType SMTType

ZFSet ZFSet

·SMT

J·KZ J·KZ

η(·)

ζ(·)

Inductively-defined indexed family of canonical isomorphisms (ζα)α : BType with
associated retractions (ηα)α : BType.

ηα ◦ ζα = 1JαKZ

Yes, ηα is ζ−1
α but we define it constructively as well.

V. Trélat From Sets to Types 22/28



Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α:

JαKZ ∼= JαSMTKZ

JαKZ JαSMTKZ
ζα

ηα

BType SMTType

ZFSet ZFSet

·SMT

J·KZ J·KZ

η(·)

ζ(·)

Inductively-defined indexed family of canonical isomorphisms (ζα)α : BType with
associated retractions (ηα)α : BType.

ηα ◦ ζα = 1JαKZ

Yes, ηα is ζ−1
α but we define it constructively as well.

V. Trélat From Sets to Types 22/28



Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α:

JαKZ ∼= JαSMTKZ

JαKZ JαSMTKZ
ζα

ηα

BType SMTType

ZFSet ZFSet

·SMT

J·KZ J·KZ

η(·)

ζ(·)

Inductively-defined indexed family of canonical isomorphisms (ζα)α : BType with
associated retractions (ηα)α : BType.

ηα ◦ ζα = 1JαKZ

Yes, ηα is ζ−1
α but we define it constructively as well.

V. Trélat From Sets to Types 22/28



Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α:

JαKZ ∼= JαSMTKZ

JαKZ JαSMTKZ
ζα

ηα

BType SMTType

ZFSet ZFSet

·SMT

J·KZ J·KZ

η(·)

ζ(·)

Inductively-defined indexed family of canonical isomorphisms (ζα)α : BType with
associated retractions (ηα)α : BType.

ηα ◦ ζα = 1JαKZ

Yes, ηα is ζ−1
α but we define it constructively as well.

V. Trélat From Sets to Types 22/28



Theorem
B types and their SMT-LIB translations are isomorphic, i.e., for any B type α:

JαKZ ∼= JαSMTKZ

JαKZ JαSMTKZ
ζα

ηα

BType SMTType

ZFSet ZFSet

·SMT

J·KZ J·KZ

η(·)

ζ(·)

Inductively-defined indexed family of canonical isomorphisms (ζα)α : BType with
associated retractions (ηα)α : BType.

ηα ◦ ζα = 1JαKZ

Yes, ηα is ζ−1
α but we define it constructively as well.

V. Trélat From Sets to Types 22/28



What we are after Found it!

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

?

We define 〈T, τ , pfτT〉a= 〈T ′, τ ′, pfτ ′T′〉 as:

τ ′ = τ SMT ∧ ητ (T ′) = T

Now prove that this is preserved!

V. Trélat From Sets to Types 23/28



What we are after Found it!

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

a=

We define 〈T, τ , pfτT〉a= 〈T ′, τ ′, pfτ ′T′〉 as:

τ ′ = τ SMT ∧ ητ (T ′) = T

Now prove that this is preserved!

V. Trélat From Sets to Types 23/28



What we are after Found it!

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

a=

We define 〈T, τ , pfτT〉a= 〈T ′, τ ′, pfτ ′T′〉 as:

τ ′ = τ SMT ∧ ητ (T ′) = T

Now prove that this is preserved!

V. Trélat From Sets to Types 23/28



What we are after Found it!

t tSMT

〈T, τ , pfτT〉

J·KB

〈T ′, τ ′, pfτ ′T′〉

J·KSMT

a=

We define 〈T, τ , pfτT〉a= 〈T ′, τ ′, pfτ ′T′〉 as:

τ ′ = τ SMT ∧ ητ (T ′) = T

Now prove that this is preserved!

V. Trélat From Sets to Types 23/28



V. Trélat From Sets to Types 24/28



BARReL: when the glass is empty

B Automated tRanslation for Reasoning in Lean

V. Trélat From Sets to Types 25/28



BARReL: when the glass is empty
Pipeline

.sys, .mch

.ref,.imp

.pog

B files
BXML
.bxml

POG
.pog

Atelier B

parse + encode WD meta-vars

automation

Lean goals

Reification as goals

BARReL

V. Trélat From Sets to Types 26/28



BARReL: when the glass is empty
Demo

Demo time!

V. Trélat From Sets to Types 27/28



Conclusion

Contributions:
• Higher-order encoding leveraging SMT-LIB’s latest features
• Formal semantics for subsets of B proof obligations and SMT-LIB
• Loosening B types to reconcile set-theoretic and type-theoretic notions

• ZFLean: framework for set-level developments in

•

Current/future work:
• Correctness of the encoding

� VTrelat/{BEer, BARReL, ZFLean}

V. Trélat From Sets to Types 28/28

https://github.com/VTrelat

